References
[1]. Manning, C. D. (2022). Human language understand & reasoning. Daedalus.
[2]. Kadavath, S., et al. (2022). Language models (mostly) know what they know. arXiv preprint arXiv: 2207.05221.
[3]. Liang, P., Bommasani, R., Lee, T., Tsipras, D., et al. (2022). Holistic evaluation of language models. arXiv preprint arXiv: 2211.09110.
[4]. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems (NeurIPS).
[5]. Lyu, B., Wang, D., & Zhu, Z. (2025). A solvable attention for neural scaling laws. University of Southampton Institutional Repository.
[6]. Chen, P. C., Tsai, H., Bhojanapalli, H. W., Chung, H. W., et al. (2021). A simple and effective positional encoding for transformers. arXiv preprint arXiv: 2109.08677.
[7]. Sachan, D. S., Zaheer, M., & Salakhutdinov, R. (2019). Revisiting lstm networks for semi-supervised text classification via mixed objective function. Proceedings of the AAAI Conference on Artificial Intelligence.
[8]. Shaukat, Z., Zulfiqar, A. A., Xiao, C., Azeem, M., et al. (2020). Sentiment analysis on IMDB using lexicon and neural networks. SN Applied Sciences.
[9]. Kiela, D., Bartolo, M., Nie, Y., Kaushik, A., Geiger, A., et al. (2021). Dynabench: Rethinking benchmarking in NLP. arXiv preprint arXiv: 2102.13249.
[10]. Gardner, M., Artzi, Y., Basmova, V., Berant, J., et al. (2020). Evaluating models' local decision boundaries. arXiv preprint arXiv: 2004.03036.
[11]. Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining pp. 168