References
[1]. Farsiu, S., Robinson, M. D., Elad, M., & Milanfar, P. (2004). Fast and robust multiframe super resolution. IEEE transactions on image processing, 13(10), 1327-1344.
[2]. Shao, W. Z., & Elad, M. (2015). Simple, accurate, and robust nonparametric blind super-resolution. In Image and Graphics: 8th International Conference, ICIG 2015, Tianjin, China, August 13–16, 2015, Proceedings, Part III (pp. 333-348). Cham: Springer International Publishing.
[3]. Zhang, K., Liang, J., Van Gool, L., & Timofte, R. (2021). Designing a practical degradation model for deep blind image super-resolution. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 4791-4800).
[4]. Reina, G. A., Panchumarthy, R., Thakur, S. P., Bastidas, A., & Bakas, S. (2020). Systematic evaluation of image tiling adverse effects on deep learning semantic segmentation. Frontiers in neuroscience, 14, 65.
[5]. Buglakova, E., Archit, A., D'Imprima, E., Mahamid, J., Pape, C., & Kreshuk, A. (2025). Tiling artifacts and trade-offs of feature normalization in the segmentation of large biological images. arXiv preprint arXiv: 2503.19545.
[6]. Kim, S. Y., Sim, H., & Kim, M. (2021). Koalanet: Blind super-resolution using kernel-oriented adaptive local adjustment. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10611-10620).
[7]. Ma, Z., Liao, R., Tao, X., Xu, L., Jia, J., & Wu, E. (2015). Handling motion blur in multi-frame super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5224-5232).
[8]. Zhang, X., Dong, H., Hu, Z., Lai, W. S., Wang, F., & Yang, M. H. (2018). Gated fusion network for joint image deblurring and super-resolution. arXiv preprint arXiv: 1807.10806.
[9]. Liu, L., Duan, J., Fu, X., Peng, W., & Liu, L. (2025). Unified 3D Gaussian splatting for motion and defocus blur reconstruction. Visual Informatics, 100270.
[10]. Zou, R., Pollefeys, M., & Rozumnyi, D. (2024). Retrieval Robust to Object Motion Blur. In European Conference on Computer Vision (pp. 251-268). Cham: Springer Nature Switzerland.