References
[1]. Zhao, H. (2013). Synthetic biology: tools and applications. Academic Press, 13-18.
[2]. Heinzinger, M., & Rost, B. (2025). Teaching AI to speak protein. Current Opinion in Structural Biology, 91, 102986.
[3]. Wang, X., Luo, J., Cai, X., et al. (2025). DeepHVI: A multimodal deep learning framework for predicting human-virus protein-protein interactions using protein language models. Biosafety and Health, 7(4), 257-266.
[4]. Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (NeurIPS), 5998-6008.
[5]. Wang, L., Li, X., Zhang, H., et al. (2025). A comprehensive review of protein language models. arXiv. https: //arxiv.org/abs/2502.06881v1
[6]. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 4171-4186.
[7]. Radford, A., Narasimhan, K., Salimans, T., et al. (2018). Improving language understanding by generative pre-training. https: //cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
[8]. Lin, Z., Akin, H., Rao, R., et al. (2023). Language models of protein sequences at the scale of evolution enable accurate structure prediction. Science, 379(6637), 1123-1130.
[9]. Madani, A., McCann, B., Naik, N., et al. (2020). ProGen: Language modeling for protein generation. bioRxiv. doi: 10.1101/2020.03.07.982272.
[10]. Nijkamp, E., Ruffolo, J. A., Weinstein, E. N., et al. (2023). ProGen2: exploring the boundaries of protein language models. Cell systems, 14(11), 968-978.
[11]. Elnaggar, A., Heinzinger, M., Dallago, C., et al. (2020). ProtTrans: Towards cracking the language of life’s code through self-supervised deep learning and high performance computing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 7112-7127.
[12]. Wang, A., Singh, A., Michael, J., et al. (2019). GLUE: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 7th International Conference on Learning Representations (ICLR). Available at: https: //arxiv.org/abs/1804.07461 doi: 10.48550/arXiv.1804.07461.
[13]. Salazar, J., Liang, D., Nguyen, T. Q., & Kirchhoff, K. (2020). Masked language model scoring. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2699-2712.
[14]. Radford, A., Wu, J., Child, R., et al. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
[15]. Rao, R., Bhattacharya, N., Thomas, N., et al. (2019). Evaluating protein transfer learning with TAPE. Advances in neural information processing systems, 32.
[16]. Rives, A., Meier, J., Sercu, T., et al. (2021). Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. PNAS, 118(15).
[17]. Brown, T., Mann, B., Ryder, N., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 33, 1877-1901.
[18]. Achiam, J., Adler, S., Agarwal, S., et al. (2023). Gpt-4 technical report. arXiv preprint arXiv: 2303.08774.
[19]. Rao, R., Liu, J., Verkuil, R., et al. (2021). MSA Transformer: Modeling protein sequences with evolutionary data. Proceedings of the 38th International Conference on Machine Learning (ICML).
[20]. Zaheer, M., Guruganesh, G., Dubey, K. A., et al. (2020). Big Bird: Transformers for longer sequences. Advances in Neural Information Processing Systems, 33, pp. 17283-17297.
[21]. Clark, K., Khandelwal, U., Levy, O., et al. (2019). What does BERT look at? An analysis of BERT’s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP. Florence, Italy: ACL, 276-286.
[22]. Lin, Z., Akin, H., Rao, R., et al. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 379(6637), 1123-1130.