References
[1]. Evans, L. C. (2022). Partial differential equations (Vol. 19). American mathematical society.
[2]. Strauss, W. A. (2007). Partial differential equations: An introduction. John Wiley & Sons.
[3]. LeVeque, R. J. (2007). Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics.
[4]. Trefethen, L. N. (2000). Spectral methods in MATLAB. Society for industrial and applied mathematics.
[5]. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.
[6]. Weickert, J. (1998). Anisotropic diffusion in image processing (Vol. 1, pp. 59-60). Stuttgart: Teubner.
[7]. Chan, T. F., & Shen, J. (2005). Image processing and analysis: variational, PDE, wavelet, and stochastic methods. Society for Industrial and Applied Mathematics.
[8]. Batchelor, G. K. (2000). An introduction to fluid dynamics. Cambridge university press.
[9]. Griffiths, D. J., & Schroeter, D. F. (2018). Introduction to Quantum Mechanics (3rd ed.). Cambridge University Press.
[10]. Courant, R., & Hilbert, D. (2008). Methods of Mathematical Physics, Vol. II: Partial Differential Equations. Wiley-VCH.
[11]. E, W., & Yu, B. (2018). The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 6(1), 1–12.
[12]. Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707.