References
[1]. Shakil, M. T. H., & Rajasekaran, R. (2022). A Data Science Approach in Quantitative Market Research. In Computational Methods and Data Engineering: Proceedings of ICCMDE 2021 (pp. 425-435). Springer.
[2]. Nguyen, D. T., Adulyasak, Y., Cordeau, J., & Ponce, S. I. (2021b). Data-driven operations and supply chain management: Established research clusters from 2000 to early 2020. International Journal of Production Research, 60(17), 5407–5431.
[3]. Wang, J. (2022). Data-driven Supply Chain Monitoring and Optimization (Doctoral dissertation).
[4]. Choi, Y., & Lee, C. (2024). Profiling the AI speaker user: Machine learning insights into consumer adoption patterns. PloS one, 19(12), e0315540.
[5]. Zhang, Y. (2024). A study on marketing strategies of Canon digital cameras in Southwest China (Master's thesis). University of Electronic Science and Technology of China.
[6]. Joshi, R., Gupte, R., & Saravanan, P. (2018). A random forest approach for predicting online buying behavior of Indian customers. Theoretical Economics Letters, 8(03), 448.
[7]. Ilesanmi, A. E., & Ilesanmi, T. O. (2021b). Methods for image denoising using convolutional neural network: A review. Complex & Intelligent Systems, 7(5), 2179–2198.
[8]. Zhu, S., Li, C., Jiang, Y., Wei, L., Kan, N., Zheng, Z., ... & Xiong, H. (2025). Stabilizing and Accelerating Autofocus with Expert Trajectory Regularized Deep Reinforcement Learning. In Proceedings of the Computer Vision and Pattern Recognition Conference (pp. 26440-26450).
[9]. Kan, N., Zheng, Z., ... & Xiong, H. (2025). Stabilizing and Accelerating Autofocus with Expert Trajectory Regularized Deep Reinforcement Learning. In Proceedings of the Computer Vision and Pattern Recognition Conference pp. 26440-26450.