References
[1]. Shao, Y., Zhang, D., Chu, H., Zhang, X., & Rao, Y. (2022). A review of YOLO object detection based on deep learning. Journal of Electronics and Information Technology, 44(10), 3697-3708.
[2]. Liu, M., Wang, X., Zhou, A., Fu, X., Ma, Y., & Piao, C. (2020). Uav-yolo: Small object detection on unmanned aerial vehicle perspective. Sensors, 20(8), 2238.
[3]. Benjumea, A., Teeti, I., Cuzzolin, F., & Bradley, A. (2021). YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. arXiv preprint arXiv: 2112.11798.
[4]. Ji, S. J., Ling, Q. H., & Han, F. (2023). An improved algorithm for small object detection based on YOLO v4 and multi-scale contextual information. Computers and Electrical Engineering, 105, 108490.
[5]. Fengchang, X., Alfred, R., Pailus, R. H., Ge, L., Shifeng, D., Chew, J. V. L., ... & Xinliang, W. (2024). DETR novel small target detection algorithm based on Swin transformer. IEEE Access, 12, 115838-115852.
[6]. Rekavandi, A. M., Rashidi, S., Boussaid, F., Hoefs, S., & Akbas, E. (2023). Transformers in small object detection: A benchmark and survey of state-of-the-art. arXiv preprint arXiv: 2309.04902.
[7]. Chen, G., Mao, Z., Wang, K., & Shen, J. (2023). HTDet: A hybrid transformer-based approach for underwater small object detection. Remote Sensing, 15(4), 1076.
[8]. Chen, S., Sun, P., Song, Y., & Luo, P. (2023). Diffusiondet: Diffusion model for object detection. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 19830-19843).
[9]. Chen, Z., Gao, R., Xiang, T. Z., & Lin, F. (2023). Diffusion model for camouflaged object detection. arXiv preprint arXiv: 2308.00303.
[10]. Zhang, M., Wu, J., Ren, Y., Yang, J., Li, M., & Ma, A. J. (2025). Diffusionengine: Diffusion model is scalable data engine for object detection. Pattern Recognition, 112141.