References
[1]. Hettinger, L. J., Berbaum, K. S., Kennedy, R. S., Dunlap, W. P., & Nolan, M. D. (1990). Vection and simulator sickness. Military psychology, 2(3), 171-181.
[2]. Riccio, G. E., & Stoffregen, T. A. (1991). An ecological theory of motion sickness and postural instability. Ecological psychology, 3(3), 195-240.
[3]. Howard, M. C., & Van Zandt, E. C. (2021). A meta-analysis of the virtual reality problem: Unequal effects of virtual reality sickness across individual differences. Virtual Reality, 25(4), 1221-1246.
[4]. Gonçalves, G., Melo, M., & Bessa, M. (2018, November). Virtual reality games: A study about the level of interaction vs. narrative and the gender in presence and cybersickness. In 2018 international conference on graphics and interaction (ICGI)(pp. 1-8). IEEE.
[5]. Paillard, A. C., Quarck, G., Paolino, F., Denise, P., Paolino, M., Golding, J. F., & Ghulyan-Bedikian, V. (2013). Motion sickness susceptibility in healthy subjects and vestibular patients: effects of gender, age and trait-anxiety. Journal of Vestibular Research, 23(4-5), 203-209.
[6]. A. Robertson, R. Khan, D. Fick, W. B. Robertson, D. R. Gunaratne, S. Yapa, V. Bowden, H. Hoffman, and R. Rajan, “The effect of virtual reality in reducing preoperative anxiety in patients prior to arthroscopic knee surgery: A randomised controlled trial, ” in Proc. IEEE 5th Int. Conf. Serious Games Appl. Health (SeGAH), Apr. 2017, pp. 1–7.
[7]. Bo Y., , Xia Z., , Zhang B., Peng Z, ., & Zhang Y., . (2024). Research on the Impact of Distortion in Stereoscopic Image Acquisition on Visual Induced Motion Sickness. Laser & Optoelectronics Progress, 61(4), 0409001.
[8]. Fernandes, A. S., and Feiner, S. K. (2016). “Combating VR sickness through subtle dynamic field-of-view modification, ” in 2016 IEEE Symposium on 3D User Interfaces (3DUI) (Greenville, SC).
[9]. Lin, J. W., Duh, H. B. L., Parker, D. E., Abi-Rached, H., & Furness, T. A. (2002, March). Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In Proceedings ieee virtual reality 2002 (pp. 164-171). IEEE.
[10]. Ryu, Y., & Ryu, E. S. (2021). Overview of Motion-to-Photon Latency Reduction for Mitigating VR Sickness. KSII Transactions on Internet & Information Systems, 15(7)
[11]. Wu, T. L. Y., Gomes, A., Fernandes, K., & Wang, D. (2018). The Effect of Head Tracking on the Degree of Presence in Virtual Reality. International Journal of Human–Computer Interaction, 35(17), 1569–1577.
[12]. Ortiz, S., Siedlecki, D., Grulkowski, I., Remon, L., Pascual, D., Wojtkowski, M., & Marcos, S. (2010). Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging. Optics express, 18(3), 2782-2796.
[13]. Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology, 3(3), 203-220.
[14]. Keshavarz, B., & Hecht, H. (2011). Validating an efficient method to quantify motion sickness. Human factors, 53(4), 415-426.
[15]. Gianaros, P. J., Muth, E. R., Mordkoff, J. T., Levine, M. E., & Stern, R. M. (2001). A questionnaire for the assessment of the multiple dimensions of motion sickness. Aviation, space, and environmental medicine, 72(2), 115-119.
[16]. Kim, H. K., Park, J., Choi, Y., & Choe, M. (2018). Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Applied ergonomics, 69, 66-73.
[17]. Choi, S. W., Lee, S., Seo, M. W., & Kang, S. J. (2018). Time sequential motion-to-photon latency measurement system for virtual reality head-mounted displays.Electronics, 7(9), 171.