References
[1]. Dong, M., Li, X., Yang, Z., Chang, Y., Liu, W., Luo, Y. and Zhang, C. (2024) State of health (SOH) assessment for LIBs based on characteristic electrochemical impedance. Journal of Power Sources, 603, 234386.
[2]. Kalker, S., Ruppert, L.A., Van Der Broeck, C.H., Kuprat, J., Andresen, M., Polom, T.A. and De Doncker, R.W. (2021) Reviewing thermal-monitoring techniques for smart power modules. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(2), 1326-1341.
[3]. Wang, F., Zhai, Z., Zhao, Z., Di, Y. and Chen, X. (2024) Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis. Nature Communications, 15(1), 4332.
[4]. Li, F., Min, Y., Zhang, Y., Zhang, Y., Zuo, H. and Bai, F. (2024) State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression. Reliability Engineering & System Safety, 242, 109787.
[5]. Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y. and He, X. (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 10, 246-267.
[6]. Feng, X., Ren, D., He, X. and Ouyang, M. (2020) Mitigating thermal runaway of lithium-ion batteries. Joule, 4(4), 743-770.
[7]. Hu, X., Zheng, Y., Howey, D.A., Perez, H., Foley, A. and Pecht, M. (2020) Battery warm-up methodologies at subzero temperatures for automotive applications: Recent advances and perspectives. Progress in Energy and Combustion Science, 77, 100806.
[8]. Rodrigues, M.T.F., Babu, G., Gullapalli, H., Kalaga, K., Sayed, F.N., Kato, K. and Ajayan, P.M. (2017) A materials perspective on Li-ion batteries at extreme temperatures. Nature Energy, 2(8), 1-14.
[9]. Severson, K.A., Attia, P.M., Jin, N., Perkins, N., Jiang, B., Yang, Z. and Braatz, R.D. (2019) Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383-391.
[10]. Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M. and Dietmayer, K. (2013) Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. Journal of Power Sources, 239, 680-688.