References
[1]. Méndez, A., Merayo, M. G., & Núñez, M. (2023). Machine learning algorithms to forecast air quality: A survey. Artificial Intelligence Review, 56, 7819–7848. https: //doi.org/10.1007/s10462-023-10424-4
[2]. Houdou, A., Jiao, L., Chen, Y., et al. (2024). Interpretable machine learning approaches for forecasting and predicting air pollution: A systematic review. Aerosol and Air Quality Research, 24, 230151. https: //doi.org/10.4209/aaqr.230151
[3]. Murad, R., Kim, J., & Lee, J. (2021). Probabilistic deep learning to quantify uncertainty in air quality forecasting. Sensors, 21(23), 8009. https: //doi.org/10.3390/s21238009
[4]. Rahman, M. A., Bhuiyan, M. A., Islam, M. M., et al. (2024). AirNet: Predictive machine learning model for air quality forecasting using a web interface. Environmental Systems Research, 13, 44. https: //doi.org/10.1186/s40068-024-00378-z
[5]. Wang, Y., Zhao, H., Li, X., et al. (2024). Air quality forecasting using a spatiotemporal hybrid deep learning model based on VMD–GAT–BiLSTM. Scientific Reports, 14, 17841. https: //doi.org/10.1038/s41598-024-68874-x
[6]. Liu, Z., Zhang, Q., Wu, Y., et al. (2023). Spatiotemporal adaptive attention graph convolution network for city-level air quality prediction. Scientific Reports, 13, 15140. https: //doi.org/10.1038/s41598-023-39286-0
[7]. Li, J., Chen, X., Xu, Y., et al. (2023). A spatio-temporal graph convolutional network (GCNInformer) for air quality forecasting. Sustainability, 15(9), 7624. https: //doi.org/10.3390/su15097624
[8]. Fan, J., Singh, N., Zheng, B., et al. (2023). Machine learning-based ozone and PM2.5 forecasting: Application to multiple AQS sites in the Pacific Northwest. Frontiers in Big Data, 6, 1124148. https: //doi.org/10.3389/fdata.2023.1124148
[9]. Singh, P., Li, H., Wang, Y., et al. (2024). Uncertainty quantification for probabilistic machine learning models for Earth observation. Scientific Reports, 14, 16166. https: //doi.org/10.1038/s41598-024-65954-w
[10]. Saad, F., Müller, J., Kloft, M., et al. (2024). Scalable spatiotemporal prediction with Bayesian neural fields. Nature Communications, 15, 5593. https: //doi.org/10.1038/s41467-024-51477-5
[11]. Ma, X., Ding, Y., Zhao, L., et al. (2020). Application of the XGBoost machine learning method in forecasting PM2.5 in the winter in China: A case study of Shanghai. Aerosol and Air Quality Research, 20, 2608–2621. https: //doi.org/10.4209/aaqr.2019.08.0408
[12]. Wang, H., Liu, J., Chen, S., et al. (2024). Enhancing air quality forecasting: A novel spatio-temporal deep learning model. Atmosphere (Basel), 15(4), 418. https: //doi.org/10.3390/atmos15040418