References
[1]. Zhou, B., et al. (2023) Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. The Lancet, 404(10467), 2077 - 2093
[2]. International Diabetes Federation (IDF). (2025). IDF Diabetes Atlas. https: //diabetesatlas.org/
[3]. Office for National Statistics (ONS). (2024). Risk factors for pre-diabetes and undiagnosed type 2 diabetes in England: 2013 to 2019. https: //www.ons.gov.uk/
[4]. Marshal, P. (2025). Diabetes Prediction Dataset. Kaggle. https: //www.kaggle.com/datasets/marshalpatel3558/diabetes-prediction-dataset-legit-dataset
[5]. Luo, F., et al. (2022). Missing Value Imputation for Diabetes Prediction. In 2022 International Joint Conference on Neural Networks (IJCNN), (pp. 1-8) Padua, Italy. https: //doi.org/10.1109/IJCNN55064.2022.9892398
[6]. Zhang, Y., He, S., & You, S. (2019). Application of Ensemble Learning in Diabetes Prediction [J]. Intelligent Computer and Applications, 9(5): 176–179.
[7]. Zhang, C. F., Wang, S., & Wu, Y. D. (2020). Diabetes Risk Prediction Based on GA-Xgboost Model. Computer Engineering, 46(3): 315–320.
[8]. Haque, M. E., Islam, S. M. J., Maliha, J., Sumon, M. S. H., Sharmin, R., & Rokoni, S. (2025). Improving Chronic Kidney Disease Detection Efficiency: Fine Tuned CatBoost and Nature-Inspired Algorithms with Explainable AI. In 2025 IEEE 14th International Conference on Communication Systems and Network Technologies (CSNT). Bhopal, India, pp. 811-818.
[9]. Moore, A., & Bell, M. (2022). XGBoost, A Novel Explainable AI Technique in the Prediction of Myocardial Infarction: A UK Biobank Cohort Study. Clinical Medicine Insights. Cardiology, 16, 11795468221133611.
[10]. Ahmad, G. N., Fatima, H., Ullah, S., Saidi, A. S., & Imdadullah. (2022). Efficient Medical Diagnosis of Human Heart Diseases Using Machine Learning Techniques With and Without GridSearchCV. IEEE Access, 10, 80151-80173.
[11]. World Health Organization. (2011). Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: Abbreviated report of a WHO consultation.
[12]. Ruze, R., Liu, T., Zou, X., Song, J., Chen, Y., Xu, R., Yin, X., & Xu, Q. (2023). Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Frontiers in Endocrinology, 14, 1161521. https: //doi.org/10.3389/fendo.2023.1161521
[13]. Singh-Manoux, A., et al. (2008). Gender differences in the association between morbidity and mortality among middle-aged men and women. American Journal of Public Health, 98(12), 2251–2257. https: //doi.org/10.2105/AJPH.2006.107912
[14]. Rodriguez-Leon, C., Aviles-Perez, M. D., Banos, O., Quesada-Charneco, M., Lopez-Ibarra Lozano, P. J., Villalonga, C., & Munoz-Torres, M. (2023). T1DiabetesGranada: a longitudinal multi-modal dataset of type 1 diabetes mellitus. Scientific Data, 10, 916. https: //doi.org/10.1038/s41597-023-02737-4
[15]. Zhao, Q., Li, J., Zhao, L., & Zhu, Z. (2023). Knowledge guided feature aggregation for the prediction of chronic obstructive pulmonary disease with Chinese EMRs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20(6), 3343-3352. https: //doi.org/10.1109/TCBB.2022.3198798