References
[1]. Ligon, S. C., Liska, R., Stampfl, J., et al. (2017). Polymers for 3D printing and customized additive manufacturing. Chemical Reviews, 117(15), 10212–10290.
[2]. Gibson, I., Rosen, D., & Stucker, B. (2015). Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing (2nd ed., pp. 1–20). New York, NY: Springer.
[3]. Yang, Z. Z., Kong, Z. W., Wu, G. M., et al. (2021). Research progress on 3D-printed polymer nanocomposites. Materials Reports, 35(13), 13177–13185.
[4]. Farahani, R. D., Dubé, M., & Therriault, D. (2016). Three-dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications. Advanced Materials, 28(28), 5794–5821.
[5]. Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500. https: //doi.org/10.1021/cr900339w
[6]. Saini, S., Belgacem, M. N., & Bras, J. (2017). Surface modification of cellulose nanofibers for enhanced interfacial adhesion in polymer nanocomposites. Materials Science and Engineering: C, 75, 760–768. https: //doi.org/10.1016/j.msec.2017.02.092
[7]. Braun, B., & Dorgan, J. R. (2009). Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules, 10(2), 334–341.
[8]. Roy, D., Semsarilar, M., Guthrie, J. T., et al. (2009). Chemical modification of cellulose by in situ reactive compatibilization. Chemical Society Reviews, 38(7), 2046–2064.
[9]. Habibi, Y. (2014). Chemical Society Reviews, 43(5), 1519.
[10]. Li, Z. C., Gan, X. P., Fei, G. X., et al. (2017). Selective laser sintering 3D printing: A way to construct 3D electrically conductive segregated network in polymer matrix. Macromolecular Materials and Engineering, 302(11), 1700211.
[11]. Zhang, Z. Y., Chen, Y. H., Qi, F. W., et al. (2017). Preparation of Nylon 12/Carbon nanotubes co-powders through solid state shear milling and their selective laser sintering 3D printing. Polymer Materials Science and Engineering, 33(3), 122–127.
[12]. Chen, Y., Xia, H. S., Zhang, J., et al. (2017). Polymer-based carbon nano-functional composites processing 3D printing research. Polymer Bulletin, (10), 85–88. https: //doi.org/10.1007/s00289-017-2065-2
[13]. Stansbury, J. W., & Idacavage, M. J. (2016). Dental Materials, 32(1), 54. https: //doi.org/10.1016/j.dental.2015.11.008
[14]. Dul, S., Fambri, L., & Pegoretti, A. (2018). Filaments production and fused deposition modelling of ABS/carbon nanotubes composites. Nanomaterials, 8(1), 49.
[15]. Xu, S., Girouard, N., Schueneman, G., et al. (2013). Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer, 54(24), 6589–6598. https: //doi.org/10.1016/j.polymer.2013.09.038
[16]. Dorigato, A., Moretti, V., Dul, S., et al. (2017). Electrically conductive nanocomposites for fused deposition modelling. Synthetic Metals, 226, 7–14. https: //doi.org/10.1016/j.synthmet.2017.05.012
[17]. Gnanasekaran, K., Heijmans, T., Van Bennekom, S., et al. (2017). 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Applied Materials Today, 9, 21–28. https: //doi.org/10.1016/j.apmt.2017.08.002
[18]. Chizari, K., Daoud, M. A., Ravindran, A. R., et al. (2016). 3D printing of highly conductive nanocomposites for the functional optimization of liquid sensors. Small, 12(44), 6076–6082. https: //doi.org/10.1002/smll.201602262
[19]. Yuans, Zheng, & Ychua, C. K., et al. (2018). Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Composites Part A, 105, 203–213. https: //doi.org/10.1016/j.compositesa.2017.12.009
[20]. Li, Z. C., Wang, Z. H., Gan, X. P., et al. (2018). Flexible TPU/MWCNTs strain sensor with ultrahigh sensitivity and tunable strain range prepared by selective laser sintering. Macromolecular Materials and Engineering, 303(6), 1700371. https: //doi.org/10.1002/mame.201700371
[21]. Zhang, Y., Fang, J. H., Li, J., et al. (2017). The effect of carbon nanotubes on the mechanical properties of wood plastic composites by selective laser sintering. Polymers, 9(12), 728. https: //doi.org/10.3390/polym9120728
[22]. Feng, X., Yang, Z., Chmely, S., et al. (2017). Carbohydrate Polymers, 169, 272. https: //doi.org/10.1016/j.carbpol.2017.05.053
[23]. Eng, H., Maleks Aedi, S., Yu, S., et al. (2017). Development of CNT-filled photopolymer for projection stereolithography. Rapid Prototyping Journal, 23(1), 129–136. https: //doi.org/10.1108/RPJ-04-2016-0050
[24]. Sandoval, J. H., Soto, K. F., Murr, L. E., et al. (2007). Nanotailoring photopolymerizable epoxy resins with multi-walled carbon nanotubes for stereolithography layered manufacturing. Journal of Materials Science, 42(1), 156–165. https: //doi.org/10.1007/s10853-006-0191-3
[25]. Mu, Q. Q., Wang, L., Dunn, C. K., et al. (2017). Digital light processing 3D printing of conductive complex structures. Additive Manufacturing, 18, 74–83. https: //doi.org/10.1016/j.addma.2017.10.002
[26]. Lee, S. J., Zhu, W. P., Nowicki, M., et al. (2018). 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. Journal of Neural Engineering, 15(1), 016018. https: //doi.org/10.1088/1741-2552/aa9040
[27]. Chizari, K., Arjmand, M., Liu, Z. T., et al. (2017). Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Materials Today Communications, 11, 112–118. https: //doi.org/10.1016/j.mtcomm.2017.09.002
[28]. Wu, J. T., Chen, N., Bai, F., et al. (2018). Preparation and fused deposition modeling of poly(vinyl alcohol)/poly(lactic acid)/hydroxyapatite composite filaments for tailored biomedical scaffolds. RSC Advances, 8(55), 31511–31519. https: //doi.org/10.1039/c8ra05047a
[29]. Chuang, K. C., Grady, J. E., Draper, R. D., et al. (2015). Additive manufacturing and characterization of Ultem polymers and composites. In Proceedings of the Composites and Advanced Materials Expo (pp. 1–7). USA.