References
[1]. P. Barot, K.; Nikolova, S.; Ivanov, I.; D. Ghate, M. Novel Research Strategies of Benzimidazole Derivatives: A Review. Mini-Rev. Med. Chem. 2013, 13 (10), 1421–1447.
[2]. Brishty, S. R.; Hossain, M. J.; Khandaker, M. U.; Faruque, M. R. I.; Osman, H.; Rahman, S. M. A. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Front. Pharmacol. 2021, 12. https: //doi.org/10.3389/fphar.2021.762807.
[3]. Pathare, B.; Bansode, T. Review- Biological Active Benzimidazole Derivatives. Results Chem. 2021, 3, 100200. https: //doi.org/10.1016/j.rechem.2021.100200.
[4]. Rashedy, A. A. E.; Aboul-Enein, H. Y. Benzimidazole Derivatives as Potential Anticancer Agents. Mini Rev. Med. Chem. 2013, 13 (3), 399–407. https: //doi.org/10.2174/138955713804999847.
[5]. Bai, S.; Zhang, M.; Tang, S.; Li, M.; Wu, R.; Wan, S.; Chen, L.; Wei, X.; Li, F. Research Progress on Benzimidazole Fungicides: A Review. Molecules 2024, 29 (6), 1218. https: //doi.org/10.3390/molecules29061218.
[6]. Quaranta, L. Benzimidazole Fungicides. In Bioactive Heterocyclic Compound Classes; John Wiley & Sons, Ltd, 2012; pp 103–118. https: //doi.org/10.1002/9783527664412.ch9.
[7]. Mamada, M.; Pérez-Bolívar, C.; Kumaki, D.; Esipenko, N. A.; Tokito, S.; Anzenbacher Jr., P. Benzimidazole Derivatives: Synthesis, Physical Properties, and n-Type Semiconducting Properties. Chem. – Eur. J. 2014, 20 (37), 11835–11846. https: //doi.org/10.1002/chem.201403058.
[8]. Marinescu, M. Chemistry and Applications of Benzimidazole and Its Derivatives; BoD – Books on Demand, 2019.
[9]. Alaqeel, S. I. Synthetic Approaches to Benzimidazoles from o-Phenylenediamine: A Literature Review. J. Saudi Chem. Soc. 2017, 21 (2), 229–237. https: //doi.org/10.1016/j.jscs.2016.08.001.
[10]. Benson, S. C.; Pershadsingh, H. A.; Ho, C. I.; Chittiboyina, A.; Desai, P.; Pravenec, M.; Qi, N.; Wang, J.; Avery, M. A.; Kurtz, T. W. Identification of Telmisartan as a Unique Angiotensin II Receptor Antagonist With Selective PPARγ–Modulating Activity. Hypertension 2004, 43 (5), 993–1002. https: //doi.org/10.1161/01.HYP.0000123072.34629.57.
[11]. Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A. B.; Singh, D.; Singh, K.; Singh, J. Toxicity, Monitoring and Biodegradation of the Fungicide Carbendazim. Environ. Chem. Lett. 2016, 14 (3), 317–329. https: //doi.org/10.1007/s10311-016-0566-2.
[12]. Jauregizar, N.; Calvo, R.; Suarez, E.; Quintana, A.; Raczka, E.; Lukas, J. C. Pharmacokinetics and Pharmacological Effect of Lerisetron, a New 5‐HT3 Antagonist, in Rats. J. Pharm. Sci. 2002, 91 (1), 41–52. https: //doi.org/10.1002/jps.1169.
[13]. Howden, C. W. Clinical Pharmacology of Omeprazole. Clin. Pharmacokinet. 1991, 20 (1), 38–49. https: //doi.org/10.2165/00003088-199120010-00003.
[14]. Maton, P. N. Omeprazole. N. Engl. J. Med. 1991, 324 (14), 965–975. https: //doi.org/10.1056/NEJM199104043241406.
[15]. Budetić, M.; Kopf, D.; Dandić, A.; Samardžić, M. Review of Characteristics and Analytical Methods for Determination of Thiabendazole. Molecules 2023, 28 (9), 3926. https: //doi.org/10.3390/molecules28093926.
[16]. Chen, J.; Li, N.; Liu, B.; Ling, J.; Yang, W.; Pang, X.; Li, T. Pracinostat (SB939), a Histone Deacetylase Inhibitor, Suppresses Breast Cancer Metastasis and Growth by Inactivating the IL-6/STAT3 Signalling Pathways. Life Sci. 2020, 248, 117469. https: //doi.org/10.1016/j.lfs.2020.117469.
[17]. Phillips, M. A. CCCXVII.—The Formation of 2-Substituted Benziminazoles. J. Chem. Soc. Resumed 1928, No. 0, 2393–2399. https: //doi.org/10.1039/JR9280002393.
[18]. Mann, J.; Baron, A.; Opoku-Boahen, Y.; Johansson, E.; Parkinson, G.; Kelland, L. R.; Neidle, S. A New Class of Symmetric Bisbenzimidazole-Based DNA Minor Groove-Binding Agents Showing Antitumor Activity. J. Med. Chem. 2001, 44 (2), 138–144. https: //doi.org/10.1021/jm000297b.
[19]. Ma, D.; Ji, X.; Wu, Z.; Cheng, C.; Zhou, B.; Zhang, Y. Synthesis of Benzimidazoles through Palladium-Catalyzed Amination of 2-Iodobenzimines with Diaziridinone. Adv. Synth. Catal. 2019, 361 (4), 739–746. https: //doi.org/10.1002/adsc.201801367.
[20]. Trivedi, R.; De, S. K.; Gibbs, R. A. A Convenient One-Pot Synthesis of 2-Substituted Benzimidazoles. J. Mol. Catal. Chem. 2006, 245 (1), 8–11. https: //doi.org/10.1016/j.molcata.2005.09.025.
[21]. Srinivasulu, R.; Kumar, K. R.; Satyanarayana, P. V. V. Facile and Efficient Method for Synthesis of Benzimidazole Derivatives Catalyzed by Zinc Triflate. Green Sustain. Chem. 2014, 2014. https: //doi.org/10.4236/gsc.2014.41006.
[22]. Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. A Direct Intramolecular C−H Amination Reaction Cocatalyzed by Copper(II) and Iron(III) as Part of an Efficient Route for the Synthesis of Pyrido [1, 2-a]Benzimidazoles from N-Aryl-2-Aminopyridines. J. Am. Chem. Soc. 2010, 132 (38), 13217–13219. https: //doi.org/10.1021/ja1067993.
[23]. Li, J.; Gu, H.; Wu, C.; Du, L. The Mechanism of Transition-Metal (Cu or Pd)-Catalyzed Synthesis of Benzimidazoles from Amidines: Theoretical Investigation. Dalton Trans. 2014, 43 (44), 16769–16779. https: //doi.org/10.1039/C4DT01944J.
[24]. Kohansal, M. Advances in Green Chemistry: Sustainable Approaches in Organic Synthesis. Int. J. New Chem. 2025, 12 (4), 726–737. https: //doi.org/10.22034/ijnc.2025.719174.
[25]. Simon, M.-O.; Li, C.-J. Green Chemistry Oriented Organic Synthesis in Water. Chem. Soc. Rev. 2012, 41 (4), 1415–1427. https: //doi.org/10.1039/C1CS15222J.
[26]. Shaikh, I. R. Organocatalysis: Key Trends in Green Synthetic Chemistry, Challenges, Scope towards Heterogenization, and Importance from Research and Industrial Point of View. J. Catal. 2014, 2014 (1), 402860. https: //doi.org/10.1155/2014/402860.