Green and Efficient Synthesis of 2-phenyl-1H-benzimidazole Using Recycled Steel Slag as a Novel and Readily Removable Catalyst
Research Article
Open Access
CC BY

Green and Efficient Synthesis of 2-phenyl-1H-benzimidazole Using Recycled Steel Slag as a Novel and Readily Removable Catalyst

Yixin Lu 1*
1 The Second High School Attached to BNU
*Corresponding author: will_lyx@outlook.com
Published on 28 October 2025
Journal Cover
ACE Vol.200
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-491-5
ISBN (Online): 978-1-80590-492-2
Download Cover

Abstract

This paper reports the efficient synthesis of 2-phenyl-1H-benzimidazole using recycled steel slag as a green and novel catalyst. Steel slag is a waste by-product from the steel refining process. It contains iron and copper species that act as Lewis acids to catalyze the reaction between phenylacetaldehyde and o-phenylenediamine. The transformation was carried out in a 9:1 ethanol–water mixture at 80 °C open to air. The reaction yielded 2-phenyl-1H-benzimidazole in 89% yield within 30 minutes. The use of steel slag as catalyst has several advantages, including low cost, mild reaction conditions, and easy removal from the reaction mixture via filtration. Overall, this method provides an efficient and sustainable methodology to synthesize 2-phenyl-1H-benzimidazole and other benzimidazole derivatives, which is a class of compound that is widely applicable in medicinal chemistry and materials science.

Keywords:

Green chemistry, Catalysis, Organic Chemistry

View PDF
Lu,Y. (2025). Green and Efficient Synthesis of 2-phenyl-1H-benzimidazole Using Recycled Steel Slag as a Novel and Readily Removable Catalyst. Applied and Computational Engineering,200,63-68.

References

[1]. P. Barot, K.; Nikolova, S.; Ivanov, I.; D. Ghate, M. Novel Research Strategies of Benzimidazole Derivatives: A Review. Mini-Rev. Med. Chem. 2013, 13 (10), 1421–1447.

[2]. Brishty, S. R.; Hossain, M. J.; Khandaker, M. U.; Faruque, M. R. I.; Osman, H.; Rahman, S. M. A. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Front. Pharmacol. 2021, 12. https: //doi.org/10.3389/fphar.2021.762807.

[3]. Pathare, B.; Bansode, T. Review- Biological Active Benzimidazole Derivatives. Results Chem. 2021, 3, 100200. https: //doi.org/10.1016/j.rechem.2021.100200.

[4]. Rashedy, A. A. E.; Aboul-Enein, H. Y. Benzimidazole Derivatives as Potential Anticancer Agents. Mini Rev. Med. Chem. 2013, 13 (3), 399–407. https: //doi.org/10.2174/138955713804999847.

[5]. Bai, S.; Zhang, M.; Tang, S.; Li, M.; Wu, R.; Wan, S.; Chen, L.; Wei, X.; Li, F. Research Progress on Benzimidazole Fungicides: A Review. Molecules 2024, 29 (6), 1218. https: //doi.org/10.3390/molecules29061218.

[6]. Quaranta, L. Benzimidazole Fungicides. In Bioactive Heterocyclic Compound Classes; John Wiley & Sons, Ltd, 2012; pp 103–118. https: //doi.org/10.1002/9783527664412.ch9.

[7]. Mamada, M.; Pérez-Bolívar, C.; Kumaki, D.; Esipenko, N. A.; Tokito, S.; Anzenbacher Jr., P. Benzimidazole Derivatives: Synthesis, Physical Properties, and n-Type Semiconducting Properties. Chem. – Eur. J. 2014, 20 (37), 11835–11846. https: //doi.org/10.1002/chem.201403058.

[8]. Marinescu, M. Chemistry and Applications of Benzimidazole and Its Derivatives; BoD – Books on Demand, 2019.

[9]. Alaqeel, S. I. Synthetic Approaches to Benzimidazoles from o-Phenylenediamine: A Literature Review. J. Saudi Chem. Soc. 2017, 21 (2), 229–237. https: //doi.org/10.1016/j.jscs.2016.08.001.

[10]. Benson, S. C.; Pershadsingh, H. A.; Ho, C. I.; Chittiboyina, A.; Desai, P.; Pravenec, M.; Qi, N.; Wang, J.; Avery, M. A.; Kurtz, T. W. Identification of Telmisartan as a Unique Angiotensin II Receptor Antagonist With Selective PPARγ–Modulating Activity. Hypertension 2004, 43 (5), 993–1002. https: //doi.org/10.1161/01.HYP.0000123072.34629.57.

[11]. Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A. B.; Singh, D.; Singh, K.; Singh, J. Toxicity, Monitoring and Biodegradation of the Fungicide Carbendazim. Environ. Chem. Lett. 2016, 14 (3), 317–329. https: //doi.org/10.1007/s10311-016-0566-2.

[12]. Jauregizar, N.; Calvo, R.; Suarez, E.; Quintana, A.; Raczka, E.; Lukas, J. C. Pharmacokinetics and Pharmacological Effect of Lerisetron, a New 5‐HT3 Antagonist, in Rats. J. Pharm. Sci. 2002, 91 (1), 41–52. https: //doi.org/10.1002/jps.1169.

[13]. Howden, C. W. Clinical Pharmacology of Omeprazole. Clin. Pharmacokinet. 1991, 20 (1), 38–49. https: //doi.org/10.2165/00003088-199120010-00003.

[14]. Maton, P. N. Omeprazole. N. Engl. J. Med. 1991, 324 (14), 965–975. https: //doi.org/10.1056/NEJM199104043241406.

[15]. Budetić, M.; Kopf, D.; Dandić, A.; Samardžić, M. Review of Characteristics and Analytical Methods for Determination of Thiabendazole. Molecules 2023, 28 (9), 3926. https: //doi.org/10.3390/molecules28093926.

[16]. Chen, J.; Li, N.; Liu, B.; Ling, J.; Yang, W.; Pang, X.; Li, T. Pracinostat (SB939), a Histone Deacetylase Inhibitor, Suppresses Breast Cancer Metastasis and Growth by Inactivating the IL-6/STAT3 Signalling Pathways. Life Sci. 2020, 248, 117469. https: //doi.org/10.1016/j.lfs.2020.117469.

[17]. Phillips, M. A. CCCXVII.—The Formation of 2-Substituted Benziminazoles. J. Chem. Soc. Resumed 1928, No. 0, 2393–2399. https: //doi.org/10.1039/JR9280002393.

[18]. Mann, J.; Baron, A.; Opoku-Boahen, Y.; Johansson, E.; Parkinson, G.; Kelland, L. R.; Neidle, S. A New Class of Symmetric Bisbenzimidazole-Based DNA Minor Groove-Binding Agents Showing Antitumor Activity. J. Med. Chem. 2001, 44 (2), 138–144. https: //doi.org/10.1021/jm000297b.

[19]. Ma, D.; Ji, X.; Wu, Z.; Cheng, C.; Zhou, B.; Zhang, Y. Synthesis of Benzimidazoles through Palladium-Catalyzed Amination of 2-Iodobenzimines with Diaziridinone. Adv. Synth. Catal. 2019, 361 (4), 739–746. https: //doi.org/10.1002/adsc.201801367.

[20]. Trivedi, R.; De, S. K.; Gibbs, R. A. A Convenient One-Pot Synthesis of 2-Substituted Benzimidazoles. J. Mol. Catal. Chem. 2006, 245 (1), 8–11. https: //doi.org/10.1016/j.molcata.2005.09.025.

[21]. Srinivasulu, R.; Kumar, K. R.; Satyanarayana, P. V. V. Facile and Efficient Method for Synthesis of Benzimidazole Derivatives Catalyzed by Zinc Triflate. Green Sustain. Chem. 2014, 2014. https: //doi.org/10.4236/gsc.2014.41006.

[22]. Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. A Direct Intramolecular C−H Amination Reaction Cocatalyzed by Copper(II) and Iron(III) as Part of an Efficient Route for the Synthesis of Pyrido [1, 2-a]Benzimidazoles from N-Aryl-2-Aminopyridines. J. Am. Chem. Soc. 2010, 132 (38), 13217–13219. https: //doi.org/10.1021/ja1067993.

[23]. Li, J.; Gu, H.; Wu, C.; Du, L. The Mechanism of Transition-Metal (Cu or Pd)-Catalyzed Synthesis of Benzimidazoles from Amidines: Theoretical Investigation. Dalton Trans. 2014, 43 (44), 16769–16779. https: //doi.org/10.1039/C4DT01944J.

[24]. Kohansal, M. Advances in Green Chemistry: Sustainable Approaches in Organic Synthesis. Int. J. New Chem. 2025, 12 (4), 726–737. https: //doi.org/10.22034/ijnc.2025.719174.

[25]. Simon, M.-O.; Li, C.-J. Green Chemistry Oriented Organic Synthesis in Water. Chem. Soc. Rev. 2012, 41 (4), 1415–1427. https: //doi.org/10.1039/C1CS15222J.

[26]. Shaikh, I. R. Organocatalysis: Key Trends in Green Synthetic Chemistry, Challenges, Scope towards Heterogenization, and Importance from Research and Industrial Point of View. J. Catal. 2014, 2014 (1), 402860. https: //doi.org/10.1155/2014/402860.

Cite this article

Lu,Y. (2025). Green and Efficient Synthesis of 2-phenyl-1H-benzimidazole Using Recycled Steel Slag as a Novel and Readily Removable Catalyst. Applied and Computational Engineering,200,63-68.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-MCEE 2026 Symposium: Advances in Sustainable Aviation and Aerospace Vehicle Automation

ISBN: 978-1-80590-491-5(Print) / 978-1-80590-492-2(Online)
Editor: Ömer Burak İSTANBULLU
Conference date: 14 November 2025
Series: Applied and Computational Engineering
Volume number: Vol.200
ISSN: 2755-2721(Print) / 2755-273X(Online)