References
[1]. REN21. Renewables 2023 Global Status Report. Paris: REN21 Secretariat, 2023.
[2]. International Energy Agency (IEA). Global EV Outlook 2023: Catching up with Climate Ambitions. Paris: IEA, 2023.
[3]. Sovacool, B. K. , Ryan, S. E. , Stern, P. C. , et al. Integrating social science in energy research. Energy Research & Social Science, 2015, 6: 95–99.
[4]. Richardson, D. B. Electric vehicles and the electric grid: A review of modeling approaches, impacts, and renewable energy integration. Renewable and Sustainable Energy Reviews, 2013, 19: 247–254.
[5]. Lund, H. , Østergaard, P. A. , Connolly, D. , Mathiesen, B. V. Smart energy and smart energy systems. Energy, 2017, 137: 556–565.
[6]. Denholm, P. , Hand, M. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy, 2011, 39(3): 1817–1830.
[7]. Wang, J., Zhong, H., Xia, Q., Kang, C. , & He, D. Optimal charging strategies for electric vehicles in smart grids: A review. Science China Technological Sciences, 2016, 59: 619–629.
[8]. Kempton, W. , & Tomić, J. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. Journal of Power Sources, 2005, 144(1): 280–294.
[9]. Kikusato, H. , Mori, T. , Yoshizawa, S. , et al. Electric vehicle charge–discharge management for utilization of photovoltaic by coordination between home and grid. Energy, 2018, 158: 306–318.
[10]. Acha, S. , Green, T. C. , Shah, N. Optimal charging strategies of electric vehicles in the UK power market. IEEE Transactions on Power Systems, 2011, 27(1): 30–40.
[11]. Ota, Y. , Taniguchi, H. , Nakajima, T. , Liyanage, K. M. , Yokoyama, A. , & Baba, J. Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging. IEEE Transactions on Smart Grid, 2012, 3(1): 559–564.
[12]. Yang, Y. , Jia, H. , & Zhao, J. Review on distributed energy scheduling for PV–EV integrated systems. Applied Energy, 2020, 268: 114965.
[13]. Zhao, H. , Wu, Q. , Hu, S. , Xu, H. , & Rasmussen, C. N. Review of energy storage system for wind power integration support. Applied Energy, 2015, 137: 545–553.
[14]. He, Y. , Pang, Z. , & Li, K. Coordinated control of EV charging and renewable generation in distribution systems. IEEE Transactions on Smart Grid, 2016, 7(2): 1117–1127.
[15]. Zhou, Y. , Wu, J. , Long, C. , & Jenkins, N. Forecasting and scheduling of distributed energy resources for a community microgrid. Applied Energy, 2018, 229: 352–363.
[16]. Colmenar-Santos, A. , Campíñez-Romero, S. , Pérez-Molina, C. , & Castro-Gil, M. Profitability of PV grid parity on a national scale: Review and case study. Renewable and Sustainable Energy Reviews, 2015, 49: 637–649.
[17]. Liu, Y. , Wu, J. , Jenkins, N. , & Meng, K. Co-optimization of electric vehicles and renewable generation in microgrids. Energy, 2019, 178: 167–179.
[18]. Zhang, C. , Ding, Y., Li, F., & Zhang, P. A review on real-time demand response in smart grids: Modeling and applications. Renewable and Sustainable Energy Reviews, 2017, 72: 694–707.
[19]. Wu, X. , Hu, X. , Yin, X. , & Moura, S. Stochastic optimal energy management of smart home with PV, EV and ESS. Journal of Power Sources, 2017, 333: 203–212.
[20]. Li, Z. , Shahidehpour, M. , Bahramirad, S. , & Alabdulwahab, A. Stochastic modeling of electric vehicle charging demand in microgrids. IEEE Transactions on Smart Grid, 2014, 5(2): 759–768.
[21]. Pan, Z., Wang, J. , & Zhang, L. Multi-objective optimization for PV–EV integrated systems in China: A case study. Energy Policy, 2021, 156: 112417.
[22]. International Renewable Energy Agency (IRENA). Innovation Outlook: Smart Charging for Electric Vehicles. Abu Dhabi: IRENA, 2019.