References
[1]. Nadimi, R., & Goto, M. (2025). Vehicle grid integration planning tool: Novel approach in case of Tokyo. Applied Energy, 399, 126509. https: //doi.org/10.1016/j.apenergy.2025.126509
[2]. Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2023). Generative AI. Business & Information Systems Engineering, 66(1), 111–126. https: //doi.org/10.1007/s12599-023-00834-7
[3]. Li, Y., Wang, K., Xu, C., Wu, Y., Li, L., Zheng, Y., Yang, S., Wang, H., & Ouyang, M. (2024). The potentials of vehicle-grid integration on peak shaving of a community considering random behavior of aggregated vehicles. Next Energy, 7, 100233. https: //doi.org/10.1016/j.nxener.2024.100233
[4]. Rancilio, G., Cortazzi, A., Viganò, G., & Bovera, F. (2024). Assessing the Nationwide Benefits of Vehicle–Grid Integration during Distribution Network Planning and Power System Dispatching. World Electric Vehicle Journal, 15(4), 134. https: //doi.org/10.3390/wevj15040134
[5]. Pradeep Vishnuram, & Sureshkumar Alagarsamy. (2024). Grid Integration for Electric Vehicles: A Realistic Strategy for Environmentally Friendly Mobility and Renewable Power. World Electric Vehicle Journal, 15(2), 70–70. https: //doi.org/10.3390/wevj15020070
[6]. Wang, C., Wu, Z., Lin, Z., & Liu, J. (2023). Multi-agent interaction of source, load and storage to realize peak shaving and valley filling under the guidance of the market mechanism. Frontiers in Energy Research, 11. https: //doi.org/10.3389/fenrg.2023.1192587
[7]. Rodrig Dekordevi, Ilker. (2025). Business models for vehicle-grid integration: a literature review and european case studies. Polimi.it. https: //hdl.handle.net/10589/234689
[8]. Alfaverh, F., Denaï, M., & Sun, Y. (2021). Electrical vehicle grid integration for demand response in distribution networks using reinforcement learning. IET Electrical Systems in Transportation. https: //doi.org/10.1049/els2.12030
[9]. Ram, S., Devassy, S., Verma, B., Mishra, S., & Akbar, S. (2021). Review on Renewable Energy Based EV Charging System with Grid Support Functionality - IR@CSIR-CEERI. Csircentral.net. http: //ceeri.csircentral.net/576/1/282020.pdf
[10]. Moon, Y., Ahn, J., Hur, W., Kim, W., & Shin, K. (2021). Economic Valuation of Vehicle-Grid Integration (VGI) in a Demand Response Application from Each Stakeholder’s Perspective. Energies, 14(3), 761. https: //doi.org/10.3390/en14030761
[11]. TECHNICAL NOTE. (n.d.). Retrieved September 11, 2025, from https: //wri.org.cn/sites/default/files/2021-11/simulator-to-quantify-and-manage-electric-vehicle-load-impacts-on-low-voltage-distribution-grids-CN.pdf
[12]. Das, S., & Deb, S. (2020). VEHICLE-GRID INTEGRATION A NEW FRONTIER FOR ELECTRIC MOBILITY IN INDIA. https: //shaktifoundation.in/wp-content/uploads/2022/01/Full-Report_Vehicle-Grid-Integration-1.pdf
[13]. Cao, C., Wu, Z., & Chen, B. (2020). Electric Vehicle–Grid Integration with Voltage Regulation in Radial Distribution Networks. Energies, 13(7), 1802. https: //doi.org/10.3390/en13071802
[14]. Wang, Y., Liu, L., Wennersten, R., & Sun, Q. (2019). Peak shaving and valley filling potential of energy management system in high-rise residential building. Energy Procedia, 158, 6201–6207. https: //doi.org/10.1016/j.egypro.2019.01.487
[15]. Sovacool, B. K., Axsen, J., & Kempton, W. (2017). The Future Promise of Vehicle-to-Grid (V2G) Integration: A Sociotechnical Review and Research Agenda. Annual Review of Environment and Resources, 42(1), 377–406. https: //doi.org/10.1146/annurev-environ-030117-020220
[16]. Nah, F. F.-H., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, 25(3), 277–304. https: //doi.org/10.1080/15228053.2023.2233814