References
[1]. Guo, H., Suo, L., & Yang, F. (2024). Analyzing the industry influencing factors of China’s GDP based on a graph model. Commercial Observation, 10(23), 29–33.
[2]. Cohen Kaminitz, S. (2023). The significance of GDP: a new take on a century-old question. Journal of Economic Methodology, 30(1), 1–14. https: //doi.org/10.1080/1350178X.2023.2167228
[3]. Li, W. (2022). Between language and image: Research on the communication effects of data visualization based on dual coding theory [Master’s thesis, South China University of Technology]. https: //doi.org/10.27151/d.cnki.ghnlu.2022.004637
[4]. Ma, J., Li, S., & Xia, M. (2022). A review of the application of machine learning in GDP prediction. Technology Intelligence Research, 4(3), 73–94. https: //doi.org/10.19809/j.cnki.kjqbyj.2022.03.008
[5]. Liu, B., Liu, Z., Liu, Y., et al. (2021). A review of data visualization research. Journal of Hebei University of Science and Technology, 42(6), 643–654.
[6]. Artekin, A. Ö., & Kalayci, S. (2024). Comparative analysis of Gini coefficient, GDP, energy consumption, and transportation modes on CO2 using NARDL (Nonlinear Distributed Lag Autoregressive Model) for the USA. Sustainability, 16(20), 9030. https: //doi.org/10.3390/su16209030
[7]. Ma, W. (2022). An empirical study on RMB exchange rate forecasting based on a combined model. https: //doi.org/10.27835/d.cnki.gnjsj.2022.000389
[8]. Guan, M. (2025). Analysis of the application of corporate financial data visualization in the context of big data. China Market, (19), 147–150. https: //doi.org/10.13939/j.cnki.zgsc.2025.19.037
[9]. Guan, Y. (2021). Factors influencing Henan Province’s GDP based on multiple linear regression. Rural Economy and Technology, 32(5), 221–224.
[10]. Wang, P. (2020). Stock price analysis and prediction based on multiple linear regression. Technology and Economic Market, (1), 84–85.
[11]. Xie, F., Sun, J., Yu, M., Lv, J., & Ma, H. (2022). Spatialization of GDP in Lanzhou City based on Luojia-1 and random forest. Remote Sensing Information, 37(2), 53–59.
[12]. Zhao, Y., Lou, F., & Cheng, Y. (2024). Construction of a macroeconomic leading indicator system based on random forest algorithm. Survey World, (4), 3–15. https: //doi.org/10.13778/j.cnki.11-3705/c.2024.04.001
[13]. Zhao, J., Li, Y., Wang, D., & Zhang, J.(2021). Heart disease prediction algorithm based on optimized random forest. Journal of Qingdao University of Science and Technology (Natural Science Edition), 42(2), 112–118. https: //doi.org/10.16351/j.1672-6987.2021.02.016
[14]. James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). Linear regression. In An introduction to statistical learning. Springer Texts in Statistics. Springer, Cham. https: //doi.org/10.1007/978-3-031-38747-0_3