References
[1]. Javed H, El-Sappagh S, Abuhmed T. (2024) Robustness in deep learning models for medical diagnostics: security and adversarial challenges towards robust AI applications. Artif Intell Rev
[2]. Balendran A, Beji C, Bouvier F, Khalifa O, Evgeniou T, Ravaud P, et al. (2025) A scoping review of robustness concepts for machine learning in healthcare. npj Digit Med, 8: 38
[3]. Dantas PV, da Silva Jr W, Carvalho LC, Carvalho CB. (2024) A comprehensive review of model compression techniques in machine learning. Appl Intell, 54: 11804–11844
[4]. Liu D, Zhu Y, Liu Z, Liu Y, Han C, Tian J, et al. (2025) A survey of model compression techniques: past, present, and future. Front Robot AI
[5]. Liu J, Zhang K, Wang H, Chen L. (2023) A comprehensive survey of robust deep learning in computer vision. Comput Vis Image Underst, 229: 1036576.
[6]. Wang J, Ai J, Lu M, Su H, Yu D, Zhang Y, et al. (2024) A survey of neural network robustness assessment in image recognition. arXiv [Internet]. 2024 Apr 12 [cited 2025 Aug 17]. Available from: https: //arxiv.org/abs/2404.08285
[7]. Paula E, Soni J, Upadhyay H, Lagos L. (2025) Comparative analysis of model compression techniques for achieving carbon efficient AI. Sci Rep, 15(1): 23461. DOI: 10.1038/s41598-025-07821-w
[8]. Khan Z, Ali S, Rehman S, Zhang T, Hussain F. (2025) Deep learning model compression and hardware acceleration for efficient deployment. Sensors, 25(3): 970
[9]. Trigka M. (2025) A comprehensive survey of deep learning approaches in image analysis. Sensors, 25(2): 531. DOI: 10.3390/s25020531
[10]. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. (2017) MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv: 1704.04861 [Internet]. Available from: https: //arxiv.org/abs/1704.04861