References
[1]. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., ... & Zieba, K. (2016). End to end learning for self-driving cars. arXiv preprint arXiv: 1604.07316.
[2]. Yang, Z., Jia, X., Li, H., & Yan, J. (2023). LLM4Drive: A survey of large language models for autonomous driving. arXiv preprint arXiv: 2311.01043.
[3]. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.
[4]. Cai, P., Wang, H., Huang, H., Liu, Y., & Liu, M. (2021). Vision-based autonomous car racing using deep imitative reinforcement learning. IEEE Robotics and Automation Letters, 6(4), 7262–7269.
[5]. Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., ... & Beijbom, O. (2020). nuScenes: A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11621–11631).
[6]. Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J., ... & Shah, A. (2019). Learning to drive in a day. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 8248–8254). IEEE.
[7]. Pan, F., & Bao, H. (2021). Research progress on autonomous driving control technology based on reinforcement learning. Journal of Image and Graphics, (1).
[8]. Chen, X., Peng, M., Tiu, P., Wu, Y., Chen, J., Zhu, M., & Zheng, X. (2024). GenFollower: Enhancing car-following prediction with large language models. IEEE Transactions on Intelligent Vehicles.
[9]. Mengjie, W., Huiping, Z., Jian, L., Wenxiu, S., & Song, Z. (2025). Research on driving scenario technology based on multimodal large language model optimization. arXiv preprint arXiv: 2506.02014.
[10]. Li, X., Wu, C., Yang, Z., Xu, Z., Liang, D., Zhang, Y., ... & Wang, J. (2025). DriVerse: Navigation world model for driving simulation via multimodal trajectory prompting and motion alignment. arXiv preprint arXiv: 2504.18576.
[11]. Kim, H., & Kee, S. C. (2023). Neural network approach super-twisting sliding mode control for path-tracking of autonomous vehicles. Electronics, 12(17), 3635.