References
[1]. Patterson, J., & Gibson, A. (2017). Deep learning: A practitioner's approach. " O'Reilly Media, Inc.".
[2]. Kotsiopoulos T, Sarigiannidis P, Ioannidis D, Tzovaras D (2021). Machine learning and deep learning in smart manufacturing: the innovative grid paradigm. Comput Sci Rev 40: 100341
[3]. Guresen, E., & Kayakutlu, G. (2011). Definition of artificial neural networks with comparison to other networks. Procedia Computer Science, 3, 426-433.
[4]. Wang, Z. J., Turko, R., Shaikh, O., Park, H., Das, N., Hohman, F., ... & Chau, D. H. P. (2020). CNN explainer: learning convolutional neural networks with interactive visualization. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1396–1406.
[5]. Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y. (2013). How to construct deep recurrent neural networks. arXiv preprint arXiv: 1312.6026.
[6]. Clements, J., Yang, Y., Sharma, A. A., Hu, H., & Lao, Y. (2021, December). Rallying adversarial techniques against deep learning for network security. In 2021, IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 01-08). IEEE.
[7]. Kasongo, S. M., & Sun, Y. (2019). A deep learning method with filter-based feature engineering for a wireless intrusion detection system. IEEE Access, 7, 38597-38607.
[8]. Mohammadpour, L., Ling, T. C., Liew, C. S., & Chong, C. Y. (2018). A convolutional neural network for a network intrusion detection system. Proceedings of the Asia-Pacific Advanced Network, 46(0), 50–55.
[9]. Albahar, M. A. (2019). Recurrent Neural Network Model Based on a New Regularization Technique for Real‐Time Intrusion Detection in SDN Environments. Security and Communication Networks, 2019(1), 8939041.
[10]. Troia, S., Alvizu, R., Zhou, Y., Maier, G., & Pattavina, A. (2018, July). Deep learning-based traffic prediction for network optimization. In 2018, the 20th International Conference on Transparent Optical Networks (ICTON) (pp. 1–4). IEEE.