References
[1]. Pati, P. C., Rajib, P., & Barai, P. (2019). The role of the volatility index in asset pricing: The case of the indian stock market. The Quarterly Review of Economics and Finance, 74, 336–346.
[2]. Cao, J., Wen, F., Zhang, Y., Yin, Z., & Zhang, Y. (2022). Idiosyncratic volatility and stock price crash risk: Evidence from china. Finance Research Letters, 44, 102095.
[3]. Bae, K.-H., Chan, K., & Ng, A. (2004). Investibility and return volatility. Journal of financial Economics, 71(2), 239–263.
[4]. Cavallo, E., Galindo, A., Izquierdo, A., & León, J. J. (2013). The role of relative price volatility in the efficiency of investment allocation. Journal of International Money and Finance, 33, 1–18.
[5]. Bhowmik, D. (2013). Stock market volatility: An evaluation. International Journal of Scientific and Research Publications, 3(10), 1–17.
[6]. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307–327.
[7]. Jacquier, E., Polson, N. G., & Rossi, P. E. (2002). Bayesian analysis of stochastic volatility models. Journal of Bsiness & Economic Statistics, 20(1), 69–87.
[8]. Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of financial econometrics, 7(2), 174–196.
[9]. Fraz, T. R., Fatima, S., & Uddin, M. (2022). Modeling and forecasting stock market volatility of cpec founding countries: Using nonlinear time series and machine learning models. JISR management and social sciences & economics (JISR-MSSE), 20(1), 1–20.
[10]. Gavrishchaka, V. V., & Banerjee, S. (2006). Support vector machine as an efficient framework for stock market volatility forecasting. Computational Management Science, 3(2), 147–160.
[11]. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.
[12]. Muhammad, D., Ahmed, I., Naveed, K., & Bendechache, M. (2024). An explainable deep learning approach for stock market trend prediction. Heliyon, 10(21).
[13]. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533–536.
[14]. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780.
[15]. Cho, K., Van Merri¨enboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv: 1406.1078.
[16]. Challet, D., & Ragel, V. (2024). Multi-timescale recurrent neural networks beat rough volatility for intraday volatility prediction. Risks, 12(6), 84.
[17]. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.
[18]. Haddouchi, M., & Berrado, A. (2024). A survey and taxonomy of methods interpreting random forest models. arXiv preprint arXiv: 2407.12759.
[19]. Lamine, D., & Brijlal, P. (2024). Forecasting stock market realized volatility using random forest and artificial neural network in south africa. International Journal of Economics and Financial Issues, 14(2), 5.
[20]. Liu, Y. (2019). Novel volatility forecasting using deep learning–long short term memory recurrent neural networks. Expert Systems with Applications, 132, 99–109.
[21]. Shen, G., Tan, Q., Zhang, H., Zeng, P., & Xu, J. (2018). Deep learning with gated recurrent unit networks for financial sequence predictions. Procedia computer science, 131, 895–903.
[22]. Koo, E., & Kim, G. (2022). A hybrid prediction model integrating garch models with a distribution manipulation strategy based on lstm networks for stock market volatility. IEEE Access, 10, 34743–34754.
[23]. Fang, T., Lee, T.-H., & Su, Z. (2020). Predicting the long-term stock market volatility: A garch-midas model with variable selection. Journal of Empirical Finance, 58, 36–49.
[24]. Rouf, N., Malik, M. B., Arif, T., Sharma, S., Singh, S., Aich, S., & Kim, H.-C. (2021). Stock market prediction using machine learning techniques: A decade survey on methodologies, recent developments, and future directions. Electronics, 10(21), 2717.
[25]. Palaniappan, V., Ishak, I., Ibrahim, H., Sidi, F., & Zukarnain, Z. A. (2024). A review on high-frequency trading forecasting methods: Opportunity and challenges for quantum based method. IEEE Access, 12, 167471–167488.