References
[1]. Rui, Z., Chun-qing, G., Qiu-ju, F., & Lin-yan, P. (2012). Study on the drought and flood disasters formation mechanism in karst regions of middle Guangxi. Procedia Engineering, 28, 277-281.
[2]. Ding, G., Li, X., Li, X., Zhang, B., Jiang, B., Li, D., ... & Hou, H. (2019). A time-trend ecological study for identifying flood-sensitive infectious diseases in Guangxi, China from 2005 to 2012. Environmental Research, 176, 108577.
[3]. Kim, W., Iizumi, T., Hosokawa, N., Tanoue, M., & Hirabayashi, Y. (2023). Flood impacts on global crop production: advances and limitations. Environmental Research Letters, 18(5), 054007.
[4]. Qi, C., Zhang, D., Zhu, Y., Liu, L., Li, C., Wang, Z., & Li, X. (2020). SARFIMA model prediction for infectious diseases: application to hemorrhagic fever with renal syndrome and comparing with SARIMA. BMC medical research methodology, 20(1), 243.
[5]. Yartu, M., Cambra, C., Navarro, M., Rad, C., Arroyo, Á., & Herrero, Á. (2022). Humidity forecasting in a potato plantation using time-series neural models. Journal of Computational Science, 59, 101547.
[6]. Yadav, A., Jha, C. K., & Sharan, A. (2020). Optimizing LSTM for time series prediction in Indian stock market. Procedia Computer Science, 167, 2091-2100.
[7]. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
[8]. Menne, M. J., Durre, I., Korzeniewski, B., McNeill, S., Thomas, K., Yin, X., Anthony, S., Ray, R., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012). Global Historical Climatology Network - Daily (GHCN-Daily), Version 3.32. NOAA National Climatic Data Center. https: //doi.org/10.7289/V5D21VHZ
[9]. Bao, W., Wei, M., He, X., Liu, G., Zhao, F., & Zhang, X. (2024). Analysis of the causes of the extreme warm-sector rainstorm in Qinzhou on May 19, 2024. Meteorological Research and Application, 45(04), 28-33.