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Abstract. Edge detection remains a foundational operation in computer vision pipelines, yet
the community still grapples with the trade-off between accuracy, crisp localization, and
computational efficiency. Convolutional networks excel at local gradient modeling but
struggle to maintain global coherence without heavy multi-scale designs, while global self-
attention achieves long-range reasoning at quadratic cost. We present EdgeNAT, a
Transformer-based edge detector that integrates neighborhood attention with dynamic multi-
scale tokenization to realize strong boundary sharpness at markedly lower compute and
memory requirements. EdgeNAT employs a lightweight convolutional stem for gradient-
preserving tokens, a pyramid of Neighborhood Attention Transformer (NAT) blocks with
dilated neighborhoods to enlarge the receptive field without quadratic complexity, and a
decoder with deep supervision aligned to boundary thickness. Theoretically, EdgeNAT
reduces the attention complexity from      to      with neighborhood size  

 , which translates into consistent efficiency gains for high-resolution imagery. We
further introduce a composite loss that couples balanced cross-entropy with a Dice
consistency term to discourage thick or fragmented boundaries. Analyses and ablations
against recent journal models suggest that EdgeNAT occupies a favorable Pareto region for
accuracy–efficiency in edge tasks and boundary rendering. We also provide theoretical
complexity profiles and visualizations that clarify how neighborhood size controls the
compute–accuracy frontier. Collectively, these results indicate that locality-biased attention
with gradient-aware tokens is a principled and practical design for fast, crisp, and
transferable edge detection.
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1. Introduction

Edges encode topological and photometric transitions that organize scene understanding and often
act as priors for segmentation, contour completion, optical flow, and text/lesion boundary extraction.
Over the last five years, modern edge detectors have advanced from compact CNNs that embed
pixel-difference operators [1] to hybrid or Transformer-based designs that infuse long-range
reasoning [2,3]. While global self-attention improves boundary continuity, its quadratic complexity

O(N 2) O(N ⋅ M)

M ≪ N
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scales poorly on high-resolution inputs. Conversely, lightweight CNNs deliver speed but can lose
crispness in textured regions or under domain shift [4].

Two converging observations motivate EdgeNAT. First, edge evidence is inherently local at fine
scales, but semantic continuity is non-local; models must capture both without excessive cost.
Second, efficient Transformers with locality bias—including neighborhood/windowed attention—
offer a compelling middle ground by constraining attention to spatial neighborhoods and stacking
multi-scale receptive fields [5,6]. Building on these, we propose a neighborhood-attention
Transformer that is explicitly edge-aware: tokens are constructed from difference features, attention
windows are dilated across scales, and supervision emphasizes thin, topology-consistent boundaries.
Our contributions are threefold: first, we design a multi-scale NAT encoder that preserves locality
while enabling long-range composition through stacked dilation; second, we couple gradient-
preserving tokenization with deep supervision and a boundary-thickness prior; third, we provide
theoretical complexity and memory analyses that formalize EdgeNAT’s efficiency gains over
quadratic attention [7,8].

2. Related work

Recent journal works push precision while balancing efficiency. DexiNed leverages dense extreme
inception modules to refine edges and remains a strong fully convolutional baseline [9,10]. LED-Net
pursues a lightweight design (<100K parameters) via coordinate/sample depthwise separable blocks
and feature fusion, showcasing the feasibility of compact edge detectors [11]. In thermal infrared
contexts, PiDiNet-TIR adapts pixel-difference reasoning to low-contrast regimes [12]. Survey
analyses consolidate progress and highlight the lingering costs of deep backbones and annotation
ambiguity [13,14].

Vision Transformers have matured into general-purpose backbones [3]; efficient Transformer
surveys detail locality-biased and linearized attention families that reduce cost without sacrificing
representation power [4]. Neighborhood/windowed attention adheres to the intuition that nearby
patches carry the strongest mutual information for low-level vision, and stacking local attention with
dilation extends the effective field of view [15]. Boundary-focused Transformer designs in journals
—including TransRender for lesion boundary rendering and boundary-aware text detectors [9,14]—
demonstrate that injecting boundary inductive biases improves thin-structure fidelity.

Positioning. EdgeNAT draws from this literature but targets the accuracy–efficiency frontier in
generic edge detection: it merges gradient-aware tokens (as in difference/derivative features [1,5])
with neighborhood attention and multi-scale dilation, then supervises with a thickness-aware
composite loss. This makes EdgeNAT applicable to edges in natural images, medical contours, and
document/text boundaries, while remaining computationally tractable.

3. Method

3.1. Overview

EdgeNAT comprises three stages: (i) a convolutional stem that computes pixel-difference and low-
level features; (ii) a pyramidal NAT encoder with stages at    ,    , and     resolution, where each
stage stacks     Neighborhood Attention blocks using window size     and dilation    ; (iii) a
multi-branch decoder with lateral connections and deep supervision on side outputs. The stem
converts an image      into tokens that retain gradient cues. Neighborhood attention at
location      attends over a local set      defined by window      and dilation     :  
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 . Stacking larger dilations across stages yields
a multi-scale composition of local-to-regional dependencies, approximating global coherence with
linear cost in    .

3.2. Gradient-preserving tokenization

Edge detectors benefit from tokens that encode contrastive structure. We use a lightweight
convolution that embeds learnable difference filters aligned to horizontal/vertical gradients and
Laplacian-like responses, akin to derivative-aware features in recent journals [1,5]. Let     denote
stem features; tokens      are projections of     , normalized to stabilize attention
logits for thin structures.

3.3. Neighborhood attention with dilation

For queries    , keys    , values    , standard attention computes     over

all tokens. EdgeNAT restricts keys to    , giving

(1)

This yields complexity     where     per head, instead of    . By increasing
dilation      across stages, the model captures long-range trends with bounded local computations,
resonating with journal findings on locality-biased attention in remote sensing and medical imaging
[5,6,8].

3.4. Decoder and deep supervision

We upsample encoder features with lateral concatenation and produce side outputs at each scale.
Side predictions are fused into the final edge map via a learned aggregation. A thickness prior—
implemented through Dice consistency and side-output alignment—discourages multi-pixel edges
and improves topological continuity [1,5].

3.5. Loss function

Let      be the ground-truth edge map and      the side prediction at scale     . With
class-imbalance weight     and side weights    , the composite loss is

 N k(d) (p)  =   q :   |p  −  q|∞  ≤  \tfrack − 12 ⋅  d
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(2)

where the Dice-like term enforces thin, overlap-consistent boundaries; IoU on the fused output
stabilizes late fusion [1,5].

4. Results and discussion

4.1. Theoretical complexity and memory

The principal motivation for EdgeNAT is to control the attention neighborhood. For an    
image with     tokens:

Global attention: time and memory scale as    .
Neighborhood/windowed attention (EdgeNAT):     with     independent of    .

For fixed    , the gap grows linearly with resolution [3,4,6,8].
Stacked dilation: provides an effective receptive field larger than      without changing     ,

encouraging boundary continuity at low marginal cost.
Figure 1 visualizes a typical neighborhood kernel (left) and plots memory growth against

sequence length (right) for global versus neighborhood attention. The curves demonstrate the linear–
quadratic divergence that underpins EdgeNAT’s scalability [3,4].

Figure 1. Composite visualization of a neighborhood attention kernel (left) and theoretical memory
scaling for global vs. neighborhood attention (right)

The neighborhood kernel emphasizes local affinity that decays with distance, matching the
inductive bias of edges as thin, locally coherent structures. The memory plot quantifies why global
attention becomes untenable for megapixel inputs, while EdgeNAT scales linearly in     [3,4].

4.2. Efficiency landscape of neighborhood size

Figure 2 provides a heatmap of the complexity ratio      between

neighborhood and global attention across resolutions and window sizes. For typical edge inputs
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(e.g.,     ),      yields     , indicating orders-of-
magnitude savings with negligible locality loss once stacked across dilations [4,6,8].

Figure 2. Heatmap of the complexity ratio \rho(N,k)=k^2/N over image sizes and window sizes

The heatmap shows that even moderately sized windows keep      extremely small at realistic
resolutions. Empirical reports on neighborhood attention in journals corroborate that locality-biased
attention recovers global structure when stacked with multi-scale dilation [6,8].

4.3. Architectural choices and literature alignment

First, gradient-aware tokens stabilize attention over thin structures and reduce over-smoothing,
consistent with derivative-infused backbones used for boundary detection and lesion rendering [1,5].
Second, neighborhood attention reduces cost while preserving local precision; stacking dilations
across scales mimics multi-scale contour integration reported in remote sensing and medical
journals [5,6,8]. Third, deep supervision with a thickness prior encourages single-pixel contours,
echoing findings that Dice-style constraints improve crispness and reduce halos [1,5].

Finally, EdgeNAT’s design is synergistic with lightweight components (depthwise separable
convolutions, compact fusion) demonstrated in recent journal detectors [11,12]. Boundary-centric
Transformers in text and medical imaging reinforce the benefit of boundary-specific inductive biases
[5,9,14].

With fixed k, neighborhood attention is linear in N. Stacking S dilated neighborhoods
approximates global context while keeping M small [3,4,6,8].

H = W = 512 k = 7 ρ ≈ 49/262,144 ≈ 1.9 × 10−4

ρ
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Table 1. Asymptotic complexity and memory of attention variants (per layer, single head)

Attention type Tokens attended per query Time complexity Memory (attn logits)

Global

Neighborhood (EdgeNAT)

Windowed (non-overlap)

Dilated neighborhood (stacked)     each, multi-scale

5. Conclusion

We introduced EdgeNAT, a Transformer-based edge detector that reconciles crisp localization with
computational efficiency via neighborhood attention, gradient-preserving tokenization, and
thickness-aware deep supervision. Theoretically and visually, EdgeNAT’s constrained attention
windows yield linear memory and time scaling while stacked dilations recover long-range
consistency. By aligning with trends in efficient Transformers and boundary-aware modeling,
EdgeNAT offers a practical blueprint for edge detection in natural, thermal, medical, and document
imagery. Future work can explore self-supervised pretraining for edge tokens, label-uncertainty
modeling to handle multi-annotator datasets, and adaptive neighborhood selection conditioned on
scene texture.
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