References
[1]. LaViola Jr, J. J., & Litwiller, T. (2011). Evaluating the benefits of 3d stereo in modern video games. In Proceedings of the SIGCHI Conference on human factors in computing systems (pp. 2345-2354).
[2]. Guzdial, M., & Riedl, M. O. (2018). Combinatorial Creativity for Procedural Content Generation via Machine Learning. In AAAI Workshops (pp. 557-564).
[3]. Kalafatis, E., Mitsis, K., Zarkogianni, K., Athanasiou, M., & Nikita, K. (2025). A modular framework for automated evaluation of procedural content generation in serious games with deep reinforcement learning agents. IEEE Transactions on Games, (99), 1-10.
[4]. Perez-Liebana, D., Liu, J., Khalifa, A., Gaina, R. D., Togelius, J., & Lucas, S. M. (2019). General video game ai: A multitrack framework for evaluating agents, games, and content generation algorithms. IEEE Transactions on Games, 11(3), 195-214.
[5]. López, C. E., Cunningham, J., Ashour, O., & Tucker, C. S. (2020). Deep reinforcement learning for procedural content generation of 3d virtual environments. Journal of Computing and Information Science in Engineering, 20(5), 051005.
[6]. Sorenson, N., Pasquier, P., & DiPaola, S. (2011). A generic approach to challenge modeling for the procedural creation of video game levels. IEEE Transactions on Computational Intelligence and AI in Games, 3(3), 229-244.
[7]. Zhao, R., & Szafron, D. (2009, October). Learning character behaviors using agent modeling in games. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (Vol. 5, No. 1, pp. 179-185).
[8]. Khalifa, A., Bontrager, P., Earle, S., & Togelius, J. (2020). Pcgrl: Procedural content generation via reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (Vol. 16, No. 1, pp. 95-101).
[9]. De Lima, E. S., Feijó, B., & Furtado, A. L. (2018). Player behavior and personality modeling for interactive storytelling in games. Entertainment Computing, 28, 32-48.
[10]. Spick, R. J., Cowling, P., & Walker, J. A. (2019). Procedural generation using spatial GANs for region-specific learning of elevation data. In 2019 IEEE Conference on Games (CoG) (pp. 1-8). IEEE.
[11]. Gasch, C., Chover, M., Remolar, I., & Rebollo, C. (2020). Procedural modelling of terrains with constraints. Multimedia Tools and Applications, 79(41), 31125-31146.
[12]. Du, H., Zhao, Y., Huang, S., Bai, J., Tian, S., & Liu, J. (2023). MyRoom: A Unity Plugin for Procedural and Interactive Indoor Scene Synthesis. In 2023 IEEE Conference on Games (CoG) (pp. 1-2). IEEE.
[13]. Treanor, M., Zook, A., Eladhari, M. P., Togelius, J., Smith, G., Cook, M., ... & Smith, A. (2015). AI-based game design patterns.
[14]. Bidarra, R., de Kraker, K. J., Smelik, R. M., & Tutenel, T. (2010). Integrating semantics and procedural generation: key enabling factors for declarative modeling of virtual worlds. In Proceedings of the FOCUS K3D Conference on Semantic 3D Media and Content (pp. 51-55). Sophia Antipolis, Méditerranée, France.
[15]. Kenwright, B. (2023). Exploring the power of creative ai tools and game-based methodologies for interactive web-based programming. arXiv preprint arXiv: 2308.11649.
[16]. Volz, V., Justesen, N., Snodgrass, S., Asadi, S., Purmonen, S., Holmgård, C., ... & Risi, S. (2020). Capturing local and global patterns in procedural content generation via machine learning. In 2020 IEEE Conference on Games (CoG) (pp. 399-406). IEEE.
[17]. Risi, S., & Togelius, J. (2020). Increasing generality in machine learning through procedural content generation. Nature Machine Intelligence, 2(8), 428-436.
[18]. Lopes, R., & Bidarra, R. (2011). Adaptivity challenges in games and simulations: a survey. IEEE Transactions on Computational Intelligence and AI in Games, 3(2), 85-99.