References
[1]. Zhang, Ziqi, Chao Yan, and Bradley A. Malin. "Membership inference attacks against synthetic health data." Journal of biomedical informatics 125 (2022): 103977.
[2]. Houssiau, Florimond, et al. "TAPAS: a toolbox for adversarial privacy auditing of synthetic data." arXiv preprint arXiv: 2211.06550 (2022).
[3]. Van Breugel, Boris, et al. "Membership inference attacks against synthetic data through overfitting detection." arXiv preprint arXiv: 2302.12580 (2023).
[4]. Laszkiewicz, Mike, et al. "Set-membership inference attacks using data watermarking." arXiv preprint arXiv: 2307.15067 (2023).
[5]. Guépin, Florent, et al. "Synthetic is all you need: removing the auxiliary data assumption for membership inference attacks against synthetic data." European Symposium on Research in Computer Security. Cham: Springer Nature Switzerland, 2023.
[6]. Naseh, Ali, and Niloofar Mireshghallah. "Synthetic data can mislead evaluations: Membership inference as machine text detection." arXiv preprint arXiv: 2501.11786 (2025).
[7]. Zhai, Shengfang, et al. "Membership inference on text-to-image diffusion models via conditional likelihood discrepancy." Advances in Neural Information Processing Systems 37 (2024): 74122-74146.
[8]. Sander, Tom, et al. "Watermarking makes language models radioactive." Advances in Neural Information Processing Systems 37 (2024): 21079-21113.
[9]. Zhu, Zhihao, Jiale Han, and Yi Yang. "HoneyImage: Verifiable, Harmless, and Stealthy Dataset Ownership Verification for Image Models." arXiv preprint arXiv: 2508.00892 (2025).
[10]. Annamalai, Meenatchi Sundaram Muthu Selva, Andrea Gadotti, and Luc Rocher. "A linear reconstruction approach for attribute inference attacks against synthetic data." 33rd USENIX Security Symposium (USENIX Security 24). 2024.
[11]. Chen, Zitao, and Karthik Pattabiraman. "A method to facilitate membership inference attacks in deep learning models." arXiv preprint arXiv: 2407.01919 (2024).