References
[1]. Zhang, E. K., Zhang, H. Z., Yao, J. C., & Wang, S. R. (2024). The dynamic evolution and dissemination structure of AIGC topics: A comparative analysis based on Weibo and Twitter. Journal of Xi'an Jiaotong University (Social Sciences), 44(3).
[2]. Batra, H., Punn, N. S., Sonbhadra, S. K., & Agarwal, S. (2021, August). Bert-based sentiment analysis: A software engineering perspective. In International Conference on Database and Expert Systems Applications (pp. 138-148). Cham: Springer International Publishing.
[3]. Pontes, E. L., & Benjannet, M. (2021, December). Contextual sentence analysis for the sentiment prediction on financial data. In 2021 IEEE International Conference on Big Data (Big Data) (pp. 4570-4577). IEEE.
[4]. Wang, L. L. (2019). Research and application of Chinese text sentiment classification based on deep learning (Doctoral dissertation, Xuzhou: China University of Mining and Technology).
[5]. Xue, T. (2021). A Python-based attention model for social sentiment analysis. Intelligent Computer and Applications.
[6]. Chaudhari, M. (2021). Sentimental emotion analysis using Python and machine learning. International Journal of Trend in Scientific Research and Development (IJTSRD), 5(4). Available online: www.ijtsrd.com. e-ISSN: 2456-6470.
[7]. Li, D. Y., Wang, Y. G., & Zhai, Q. Q. (2024). A deep learning-based method for sentiment analysis of online comments. Modeling and Simulation, 13, 5372.
[8]. Xie, R. Z., & Li, Y. (2020). A text sentiment classification model based on BERT and dual-channel attention. Journal of Data Acquisition & Processing, 35(4).
[9]. Joseph, T. (2024). Natural language processing (NLP) for sentiment analysis in social media. International Journal of Computing and Engineering, 6(2), 35-48.
[10]. Darshan, R., & Girish, A. (2023). Twitter sentiment analysis in Python. Journal of Emerging Technologies and Innovative Research (JETIR), 10(4).