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Reinforcement learning (RL), as a core technology of artificial intelligence, has
shown strong potential in the fields of robotics, games and autonomous driving. However,
the "black box" nature of deep RL models leads to a lack of transparency in the decision-
making process, making it difficult for users to understand and trust the agent behavior of
RL models, and the uninterpretability of decisions may cause serious consequences in
sensitive fields such as healthcare and finance. At the same time, because traditional RL
pursues maximum reward and result models often ignore fairness, leading to policy bias,
which affects the group's rights. So this article will summarize from the perspective of two
key transparency and fairness of RL as summarized in the paper: one is based on the
interpretability of the decision-making method, using the causal analysis and partial
interpretation and visualization tools to make decisions transparent; Second, the decision-
making method based on the constraint conditions, through multi-objective optimization and
gradually constraints ensure the decision unfair. This review covers the methodologies,
experimental results and limitations of representative literature in recent years. The
significance of this paper is to systematically integrate these methods, reveal the interaction
challenges of transparency and fairness, promote the development of more reliable RL
systems, and look forward to future directions to help promote the ethical deployment and
sustainable innovation of RL in social applications.

Reinforcement learning, Interpretability, Decision making Introduction

Reinforcement learning (RL) through the Markov decision process of interaction with the
environment, to maximize the cumulative rewards discounted as the goal, has become an efficient
sequential decision-making making in artificial intelligence learning. In recent years, the integration
of deep neural networks has significantly improved the policy adaptation and generalization ability
of RL in complex high-dimensional tasks. For example, in the scenarios where autonomous vehicles
navigate complex road conditions and agents learn cooperation and confrontation in multi-player
soccer games [1], RL has shown strong learning potential. However, deep RL policy networks often
exhibit "black-box" characteristics, and their decision logic is difficult to intuitively understand by
end users. Taking StarCraft II as an example, users often cannot explain why the agent chooses to
"build a supply station" instead of "train combat units" at a particular moment, which weakens trust
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and hinders human-machine collaboration [2]. This cannot be interpreted not only limiting the RL in
key areas of application, but also magnifying the potential risks, such as strategy holes or fair.

The unexplainability of deep RL stems from three main aspects. First, the coupling of high-
dimensional state-action space with deep network parameters leads to an elusive mapping path, and
the agent may learn "shortcut" strategies due to reward shaping holes - e.g., in the MuJoCo Walker
task, the agent deliberately falls and then gets up to obtain a higher reward shaping term instead of
walking steadily [3]. Secondly, the cumulative effect of temporal decisions magnifies the difficulty
of causal traceability. Experiments show that in the classical MountainCar environment, if the
discount factor is not set properly, the agent will converge to the unexpected oscillation strategy,
further increasing the explanation burden [4]. Finally, the problem of lack of fairness has become
increasingly prominent. In the multi-agent cooperation scenario, when each agent independently
optimizes its own payoff, the system is easy to fall into the "efficiency first" Nash equilibrium,
resulting in resource allocation skewed to the majority group [5]. Especially in group-sensitive RL
environments, if the environment transition kernel itself contains direct dependence on sensitive
attributes (which violates the dynamic fairness condition), the long-term reward gap will continue to
be magnified even if the strategy satisfies the immediate statistical fairness constraint [6].

To address the above challenges, this paper reviews the transparency and fairness research in RL
from two complementary paths: first, from the perspective of interpretability. Based on causal
reasoning of facts explain the importance [2], the time step to extract the [7,3] and partial strategies
such as method, help users to establish a transparent DRL model; Secondly, the fairness constraint
perspective. By the average reward of the multi-objective RL constraints [4], distributed social
welfare maximization [5], and dynamic correction [6], fair optimization of cumulative returns at the
same time ensures fairness. On this basis, this paper further explore the synergy potential of the two
paths. Can be interpreted tools can provide intuitive basis for fair constraints, reveals how
constraints affect every step of the decision; On the other hand, the introduction of fairness
constraints can inject a new semantic dimension into the explanation mechanism, so that it can not
only explain "why a certain group must be treated differently", but also clarify "why a certain group
must be treated differently".

Furthermore, this paper analyze the existing limitations, including the computational bottleneck
of counterfactual interpretation and the performance tradeoff brought by fairness constraints, and
look forward to future directions: using large language models to automatically translate numerical
explanations into natural language narratives, or designing adaptive fairness mechanisms in non-
stationary environments. Comb through the system and method of fusion, this paper is intended to
build a credible and impartial reinforcement learning system to provide the methodological
framework and practical guide.

In the field of reinforcement learning (RL), the development of interpretability methods aims to
bridge the gap between model complexity and human understanding. These methods are typically
categorized by explanation type, such as global explanations that provide holistic policy insight such
as revealing temporal relationships through causal models, while local explanations profile specific
decisions such as factorization based on feature contributions. They can also be divided into rear
explanations according to the mechanism, such as training after the analysis of counterfactual
simulation or displayed shapes value calculation, and the intrinsic interpretation, such as training
embedded in the modular network design. The following review selected representative literature,
focusing on the innovation of methodology, experimental verification and comparison to each other.
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The introduction of the causal reasoning framework, the causal analysis method of lens will RL
decision modeling for cause and effect diagram, by the fact that simulation generated explanation. It
extracts causal relationships from the state-action-reward chain, and uses intervention actions to
infer what the outcome would be if other actions were selected. This innovation is to combine causal
models with the temporal properties of RL, avoiding the static limitations of traditional feature
importance methods. In the training phase, the causal model needs to integrate the environment
dynamics, while Monte Carlo sampling is used to approximate the causal path for explanation
generation. This method is suitable for discrete action Spaces, such as Starcraft II. In the Starcraft 11
benchmark, the method evaluates task prediction accuracy, explanation satisfaction, and trust
through a user study with 120 participants. The results show that the causal model significantly
outperforms the baseline model in task prediction and satisfaction, but the impact on trust is not
statistically significant. Compared with pure SHAP methods, this framework pays more attention to
temporal causality and provides richer narrative explanations, but has higher computational
overhead because multiple paths need to be simulated, which is not as efficient as local methods in
real-time applications [2].

The local explanation framework is based on a variant of SHAP value, which provides feature
contribution analysis for RL local decision making, and decomposes the value function into a
weighted sum of state features. Its innovation lies in adapting to the sequential nature of RL, and
calculating the impact of actions in a specific state through time-series sensitive SHAP. This
framework uses a post-interpretation mechanism, uses background dataset sampling to calculate
SHAP values, and supports continuous or discrete space. Its core formula is the expected difference
of value contribution, which ensures the fidelity of interpretation. In the Four Rooms, Door-Key,
MiniPacman, and Pong environments, the method evaluates the effectiveness of explanations
through user studies, and the results show that it outperforms baselines in task prediction. This
method performs well in low-dimensional tasks, but the sampling complexity increases in high-
dimensional scenarios, leading to efficiency bottlenecks [7].

The EDGE framework focuses on the interpretation of the importance of time steps, and analyzes
the activation patterns of deep RL networks by using a self-explanation model, which includes a
Gaussian process and a custom kernel to generate explanations that highlight the influence of key
time steps on the final reward. The innovation of EDGE is to bridge the Gaussian process and RL
explanation, and transform abstract parameters into time-step level policy insights. This framework
is integrated into the policy network, and parameter learning is optimized through variational
inference and induced points. It is suitable for visual input tasks and supports end-to-end training.
On Atari and MuJoCo environments, the method validates interpretation fidelity and demonstrates
advantages in policy forensics through complementary user studies. Tests reveal that the method is
robust in complex environments, but has weak generalization to non-sequential data [3].

The neural module pipeline method adopts a modular decomposition strategy to split the RL
network into functional modules, such as exploration modules and reward evaluation modules,
which provide functional explanations through induction and detection. Its innovation lies in
emphasizing the transparency of the interaction between modules, which is borrowed from
neuroscience. This pipeline includes eliculation, where regularized training promotes modularity;
Detection, or activation analysis; And representation, which is function labeling. It uses
decomposition techniques to quantify module contributions. In the MiniGrid environment, including
2D and 3D variants, the method reveals the emergence of navigation modules and validates
functionality through ablation experiments. This method performs well in multi-task RL, but the
training overhead increases [8].
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The common advantage of these methods is to enhance the confidence of RL, but the limitations
include computational cost and generalization challenges. In comparison, causal and local methods
are more suitable for analytical tasks, while time-stepping and modularity are more suitable for
engineering applications.

The introduction of fairness constraints in reinforcement learning (RL) aims to alleviate the problem
of bias amplification, where algorithmic decisions can amplify inherent biases in the data, leading to
long-term inequality. These methods are classified by constraint type, such as hard constraints
strictly enforce fairness, while soft constraints are achieved through regularization. They can also be
classified into single-agent and multi-agent by application scenario. The following literature review
highlights their optimization strategies, fairness metric improvements, and cross-comparisons.
Analysis shows that although these methods balance fairness and performance, they often increase
the difficulty of optimization. In the future, it is necessary to explore adaptive constraints to cope
with dynamic environments.

Fairness policy learning in multi-objective RL regards fairness as multi-objective optimization,
and uses average or discounted reward to constrain the Pareto front to solve. The innovation of
multi-objective RL is to deal with the fairness effect of the discount factor and avoid the short-term
bias of traditional RL. This approach embeds fairness regularities into the loss function and iterates
through evolutionary algorithms or gradient descent. It is suitable for multi-objective scenarios, such
as resource allocation. In the grid world, the fairness metric is significantly improved, which is
based on the GGF welfare function with less reward loss. The results prove the effectiveness of the
constraint, but the convergence of multi-objective search is slow [4].

The decentralized multi-agent fairness strategy adopts a decentralized framework and imposes
fairness constraints through inter-agent communication to avoid a central bottleneck. Its innovation
lies in distributed optimization, which improves global performance while maintaining local
fairness. In this approach, a communication protocol and fair Lagrange multipliers are introduced,
and agents update their strategies independently. It supports cooperative or competitive scenarios. In
the navigation task, fairness improves significantly, the CV metric decreases, and the performance
outperforms the baseline. This method is efficient in large-scale agents, but the communication
overhead needs to be optimized, and experiments show that it may amplify latency in complex
environments [5].

Dynamic fairness constrained RL explores dynamic fairness, captures the inequality in the
environment dynamics, and evaluates the impact of changes in sensitive attributes on the next state
and reward. Its innovation is to adopt a causal perspective, decompose the sources of inequality,
distinguish the inequity in decision-making, historical and dynamic factors, and adapt to the
temporal environment. This method introduces sensitive attribute intervention into the RL
framework, and derives a recognition formula to reliably estimate from data. It is suitable for
temporal tasks involving sensitive attributes, such as recommender systems. The bias is significantly
reduced and the reward is stable. The results are real-time, but the dynamic robustness needs to be
verified. Compared with the aforementioned global methods, this dynamic strategy is more flexible
and easier to integrate causal analysis, but may amplify noise in multiple agents, which is
complementary to decentralized multi-agent fair strategies [5,6]. The limitation is that it is difficult
to adjust the constraint strength parameter, and an adaptive threshold is recommended.

The framework of the under-specification problem focuses on the hidden danger of fairness
caused by the under-specification of the model, which is alleviated by diversified training. This
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framework can be analogously applied to RL reward design, emphasizing the fairness of data and
reward design. It analyzes distribution shifts and introduces regularized samples. In RL, it can be
applied to reward reshaping. The bias is significantly reduced, providing theoretical support, and the
results guide constraint design in RL evaluation [9].

These methods advance fair RL, but the performance tradeoffs such as increased computational
complexity and complexity are generic issues, e.g., multi-objective optimization requires more
iterations, and abstract frameworks are difficult to quantify directly. The comparison shows that
multi-objective is suitable for a single environment, and decentralized or progressively more suitable
for multi-agent environments.

Although existing approaches have made progress, they still face multiple limitations.
Interpretability mechanisms often introduce additional computational overhead, such as causal graph
construction or SHAP value calculation, which may lead to delays in real-time RL applications [10].
Although fairness constraints improve fairness, they may sacrifice the overall performance,
especially in resource-limited environments, where optimization convergence slows down [11]. For
example, this work proves exponential time lower bounds under exact fairness constraints, leading
to significant performance degradation of learning algorithms in multi-state environments. In multi-
agent scenarios, the interaction between explanations and constraints is complex, and it is difficult
for a single method to satisfy both global transparency and local fairness [12]. The lack of
adaptability in dynamic environments is also a pain point, and the stability of explanations is
difficult to guarantee when agent behavior changes over time [13]. In addition, in continuous action
Spaces, constraints may lead to policy instability; There are also conflicts between reward shaping
and fairness, for example, historical data bias may be amplified by the reward function. From an
ethical perspective, the paper may discuss fairness, but the interpretation method itself may
introduce new biases (e.g., interpretation bias). For example, causal approaches assume that causal
structure is known and may reinforce human biases. Literature coverage is biased towards
methodologies and ignores application cases (e.g., fair RL in real-world deployments), which may
lead to ignoring cross-group fairness issues [9]. For example, in autonomous driving, fairness RL
needs to consider cross-fairness to avoid ethical dilemmas for vulnerable groups [12], and this work
explains multi-agent behaviors through temporal queries, which can be extended to cross-group
scenarios.

Looking forward to the future, the first is to integrate large language models (LLMS) to generate
natural language explanations, such as combining GPT variants to describe RL decision logic to
improve user friendliness. The second is to develop an adaptive constraint mechanism, which uses
online learning to dynamically adjust the fairness threshold and adapt to environmental variation
[11]. The third is to explore a hybrid framework for causal fairness that fuses transparent methods
with constraints, such as using temporal causal analysis in multi-agent RL [12] to ensure long-term
fairness, and borrowing from the taxonomy of cross-fairness [9] to extend to continuous attributes.
At the same time, MDP transformation [13] can be fused with LLM to generate natural language
explanations. In addition, the establishment of standardized evaluation benchmarks will facilitate
method comparison and promote cross-domain applications, such as RL in environmental justice.
These directions are expected to address current bottlenecks and enable the ethical transformation of
RL.
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5. Conclusions

The opacity and unfairness of reinforcement learning have become obstacles to its large-scale
application. This paper reveals the root causes of these problems through background analysis, and
gives a systematic review from two dimensions of interpretability and constraints. In terms of
interpretability, methods such as causal explanation and local analysis effectively improve the
decision transparency and help users understand the agent's logic deeply. In terms of constraints,
multi-objective optimization and a dynamic fairness mechanism ensure the fairness of the strategy
and reduce the influence of bias. The integration of these perspectives not only demonstrates the
synergies between methods, such as transparent tools that reveal the side effects of constraints, but
also highlights their practical implications: enhancing the trustworthiness of RL systems, complying
with ethical standards, and providing reliable support for high-risk domains such as healthcare and
finance.

Nevertheless, current research still faces challenges such as computational inefficiency,
performance tradeoffs, and multi-agent complexity, which also provide opportunities for innovation.
This survey constructs a comprehensive framework that recognizes these challenges and provides
guidance for future research, such as fusing large language models for multimodal interpretation or
developing dynamically fair algorithms to adapt to real-time scenarios, ultimately inspiring more
innovations to drive reinforcement learning toward a more inclusive and transparent direction,
promoting its sustainable integration and beneficial impact in society.
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