Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOLI: 10.54254/2755-2721/2025.LD27825

Optimizing BERT Fine-tuning Strategies: A Hyperparameter
and Architecture Analysis for Sentence Pair Classification

Lu Liu

Sino-European School of Technology, Shanghai University, Shanghai, China
liulu@shu.edu.cn

To address the challenges in fine-tuning Pre-trained Language Models (PLMs) like
BERT, where performance is highly sensitive to architecture and hyperparameter choices,
this study proposes and validates a systematic two-stage optimization process using the
MRPC sentence pair classification task. Progressing from architecture exploration to
parameter optimization, our experiments first reveal that a simplified single-layer linear
classifier outperforms more complex structures for this task. Subsequently, large-scale
hyperparameter tuning identifies batch size as the most critical parameter, while others like
learning rate exhibit a distinct optimal range. By implementing this structured methodology,
we significantly improved the model's validation accuracy. This work demonstrates that a
methodical approach, combining fine-grained architecture adaptation with systematic
parameter tuning, is crucial for realizing the full potential of pre-trained models.

BERT, Model Fine-tuning, Hyperparameter Optimization, Classifier
Architecture, Natural Language Processing.

In recent years, the field of Natural Language Processing (NLP) has undergone a paradigm shift led
by Pre-trained Language Models (PLMs). Models such as BERT (Bidirectional Encoder
Representations from Transformers) [1] have acquired profound language knowledge and contextual
understanding capabilities through self-supervised learning on massive unlabeled text corpora.
Subsequently, by fine-tuning on labeled data for specific downstream tasks, these models can adapt
to new tasks with high efficiency, achieving state-of-the-art results on various benchmarks,
including text classification, semantic matching, and question answering, thereby becoming the
mainstream technological paradigm in NLP [2, 3].

However, the immense success of this "pre-training and fine-tuning" paradigm has also obscured
the complexity and challenges inherent in the fine-tuning process itself [4]. Fine-tuning is not a
simple "plug-and-play" process; its final effectiveness is highly dependent on the choice of fine-
tuning strategy and hyperparameter configuration. Research and practice have shown that
inappropriate fine-tuning schemes, such as using general-purpose default parameters or arbitrarily
constructing a task-specific head, often fail to fully unleash the potential of pre-trained models. This
can even lead to unstable model training and poor generalization, especially on small to medium-
sized datasets [5]. Therefore, how to systematically optimize the fine-tuning process has become a

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

18



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27825

crucial link in translating the powerful capabilities of pre-trained models into practical application
value.

To address these challenges, this study aims to deeply investigate and validate two key
optimization paths for the BERT fine-tuning process: model architecture optimization and training
process optimization. Specifically, this paper proposes and seeks to answer the following two core
questions:

The Impact of Classifier Structure: Given BERT's powerful feature extraction capabilities, does a
deeper, more complex classifier always lead to better performance? Or, for a specific task, is a
simplified structure more effective?

The Sensitivity and Interaction Effects of Hyperparameters: How do key hyperparameters such as
learning rate, batch size, and weight decay individually and collectively affect model performance?
Is there an optimal combination of parameters that can significantly enhance the final performance?

To answer these questions, this paper uses the MRPC (Microsoft Research Paraphrase Corpus)
task from the GLUE benchmark as an experimental platform and designs a progressive two-stage
optimization process. First, through comparative experiments, we explore the impact of different
classifier complexities on model performance to identify an efficient baseline model architecture.
Subsequently, building on this architecture, we conduct a large-scale global hyperparameter grid
search to systematically analyze the independent and interactive effects of various parameters and
identify the optimal training configuration.

The main contribution of this study is not only validating the effectiveness of simplifying
classifier structure and systematic hyperparameter tuning in BERT fine-tuning but, more
importantly, proposing and implementing a structured optimization process from "architecture
exploration" to "parameter optimization." Experimental results show that this process significantly
improves model performance, increasing the validation accuracy from an unoptimized baseline of
approximately 79% to 84.52%. We hope that the findings and methods of this study will provide
valuable practical guidance and theoretical reference for researchers and engineers in related fields
when fine-tuning models.

The remainder of this paper is organized as follows: Chapter 2 reviews the background and
related work on pre-trained language models and fine-tuning techniques. Chapter 3 details the
experimental design, including the dataset, model, and the two-stage optimization strategy, and
presents and analyzes the experimental results. Finally, Chapter 4 concludes the paper and discusses
future research directions.

In the field of Natural Language Processing (NLP), pre-trained language models represented by
BERT have made groundbreaking progress in numerous tasks through the "pre-train and fine-tune"
paradigm [1]. However, fine-tuning is not a straightforward process; its final outcome heavily relies
on the chosen fine-tuning strategy and hyperparameters [2]. An "out-of-the-box" or arbitrarily
configured fine-tuning scheme often fails to fully leverage the potential of pre-trained models,
especially on small to medium-sized datasets, where models are prone to overfitting and poor
generalization.

Therefore, the core objective of this study is to systematically investigate and validate two key
optimization paths for the BERT fine-tuning process to enhance its performance on specific



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27825

downstream tasks. Specifically, using the MRPC (Microsoft Research Paraphrase Corpus) task from
the GLUE benchmark as a case study, this research unfolds in stages:

* Exploring Fine-tuning Architecture Optimization: This involves investigating the impact of
different structural complexities of the top-level classifier on BERT's model performance. This study
aims to answer a critical question: for a model like BERT, which already possesses powerful feature
extraction capabilities, does a deeper, more complex classifier always yield better performance?

» Exploring Training Process Optimization: After identifying a superior classifier structure, this
study will conduct a large-scale global hyperparameter tuning. We will systematically analyze the
non-linear impact of key hyperparameters like learning rate and batch size, as well as their
interactions, on model performance to find the optimal training configuration.

Through these experiments, this study aims to provide an effective, end-to-end optimization
framework—from architecture to parameters—for fine-tuning BERT on specific NLP tasks, offering
both practical guidance and insights into the mechanisms behind different optimization strategies.

In recent years, with the introduction of the Transformer model, pre-trained language models have
achieved unprecedented success [3]. BERT (Bidirectional Encoder Representations from
Transformers) stands out as a prime example, learning deep language representations through pre-
training on massive unlabeled text corpora with tasks like Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP) [1]. This "pre-train and fine-tune" paradigm allows it to achieve
state-of-the-art performance on various downstream tasks, such as text classification and named
entity recognition, with only a small amount of labeled data.

Fine-tuning is a crucial step in adapting general-purpose pre-trained models to specific downstream
tasks [2]. During this process, the model's parameters are updated based on the labeled data of the
target task, enabling it to learn task-specific features and patterns. Studies have shown that fine-
tuning primarily affects the higher layers of the model (especially the last few), adapting their
attention patterns and feature representations to the downstream task, while the lower layers retain
most of the general linguistic knowledge [6].

However, the fine-tuning process is not without its challenges. Two core challenges form the
motivation for this study:

The Challenge of Architecture Selection: When fine-tuning, it is common to add one or more new
"task-specific heads," such as a classifier, on top of the BERT model. The design of this task head
(e.g., number of layers, use of activation functions or Dropout) directly affects the model's learning
capacity and final performance. Designing a classifier that can effectively utilize BERT's features
without introducing excessive redundant parameters is a question worth exploring.

The Challenge of Hyperparameter Sensitivity: Large models like BERT are highly sensitive to
hyperparameters such as learning rate, batch size, and weight decay [5]. Improper hyperparameter
settings can lead to unstable training, slow convergence, or even severe performance degradation. As
pointed out by Liu and Wang, automated hyperparameter optimization (HPO) methods may not even
outperform a simple grid search under a limited time budget, which highlights the complexity of the

20



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27825

tuning process [7]. Due to the complex nonlinear relationships between hyperparameters, finding the
optimal combination usually requires systematic experimental search.

2.2.3. Fine-tuning optimization methods and related work

In response to the above challenges, the academic community has conducted extensive exploration.
In terms of architecture optimization, some studies have shown that for certain tasks, a more
complex structure is not always better. For instance, Arase and Tsujii [8] found in their research that
a "transfer fine-tuning" method that simplifies the feature generation process can achieve superior
performance on small-scale datasets. Their conclusion—that "simple feature generation methods are
more effective than complex ones"—provides important inspiration for this study's exploration of
simplified classifier structures, suggesting that the features extracted by BERT may already be
powerful enough, not requiring an overly complex classifier for further processing.

In terms of hyperparameter optimization, systematic tuning is considered a necessary means to
improve model performance. Manual tuning is time-consuming and inefficient, so automated
methods such as Grid Search, Random Search, and Bayesian Optimization are widely used [9].
Especially for large language models like BERT and the GPT series, their high training and
inference costs, as well as their impact on energy consumption and the environment, have brought
new challenges to the optimization process. This has spurred research into more economical and
efficient hyperparameter optimization methods. For example, Wang et al. [10] proposed a
framework called EcoOptiGen, designed specifically for the inference optimization of large
language models. It systematically finds the optimal combination of inference hyperparameters
within a limited budget by combining economical hyperparameter optimization strategies with cost-
based pruning techniques. Sun et al. also confirmed that appropriate fine-tuning of BERT for
specific tasks is key to achieving good classification results [11]. The in-depth analysis of BERT
fine-tuning dynamics by Hao et al. [6] also indirectly corroborates the complexity of the influence of
parameters like learning rate on different layers of the model, highlighting the importance of refined
tuning.

2.2.4. The GLUE dataset and the MRPC task

To standardize the evaluation of the generalization ability of NLP models, the GLUE (General
Language Understanding Evaluation) benchmark was proposed [12]. It covers nine tasks, including
semantic similarity and natural language inference. The MRPC (Microsoft Research Paraphrase
Corpus) task selected for this study is a classic binary classification task within it, which requires the
model to determine whether two sentences are paraphrases of each other [13]. The MRPC dataset is
of a moderate scale and has high requirements for the model's semantic understanding ability,
making it an ideal experimental platform for validating the effectiveness of fine-tuning strategies.

2.2.5. Existing problems and summary

Although the BERT fine-tuning paradigm has become mainstream, how to efficiently and stably
obtain optimal performance remains a practical challenge. Most existing research has focused on
proposing new pre-training methods or model architectures, while the systematic optimization
strategies for the fine-tuning process itself—particularly the relationship and practical workflow
between classifier architecture selection and global hyperparameter tuning—have not been
sufficiently discussed. Many practitioners tend to use recommended default parameters or conduct

21



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27825

small-scale trial-and-error, which limits the upper bound of the model's performance [14]. Therefore,
this study aims to fill this gap by providing a more instructional optimization framework for the
BERT fine-tuning process through systematic experiments.

To validate the effectiveness of the fine-tuned BERT model on a specific natural language
processing task and to explore the impact of key hyperparameters and different fine-tuning strategies
on model performance, this study designed and implemented the following experiments. This
chapter will detail the experimental environment, dataset, model configuration, experimental design,
and provide an in-depth analysis and discussion of the experimental results.

The software environment for this experiment is based on the Python language, with PyTorch as the
core framework. The construction, training, and fine-tuning of the model primarily rely on the
Hugging Face Transformers library, while the Datasets library is used for loading and processing the
dataset. All code is configured to prioritize CUDA acceleration to ensure training efficiency.

This study uses a public sentence-pair classification task dataset for the experiment. The task
aims to determine the relationship between two input sentences (sentencel and sentence?2).

The data preprocessing pipeline is as follows:

» Tokenization: Use BertTokenizer to tokenize the input sentence pairs and convert them into
input IDs acceptable to the model.

* Padding & Truncation: To handle text sequences of varying lengths, this study processes all
input sequences to a uniform max_length=128. Sequences longer than this are truncated, and shorter
ones are padded.

* Data Loading: Use PyTorch's DatalLoader to construct a data pipeline for batch loading.

The experiment selects bert-base-uncased as the pre-trained model and builds a
BertForSequenceClassification model on top of it to handle the downstream sentence-pair
classification task. The model's optimizer is AdamW, used in conjunction with a linear learning rate
warmup and decay strategy, which helps stabilize the model in the early stages of training and
achieve better convergence later on.

The experiment in this study follows a progressive optimization process from coarse to fine,
mainly consisting of two stages:

1. Fine-tuning Strategy Exploration: First, based on a fixed set of preliminary hyperparameters,
this study explores the impact of classifiers with different complexities on model performance,
aiming to determine an efficient base model architecture suitable for this task.

2. Global Hyperparameter Tuning: Based on the optimal classifier architecture identified in the
first stage, this study conducts a large-scale global hyperparameter search to further squeeze model
performance and find the optimal combination of training parameters.

The goal of this stage of the experiment is to evaluate the impact of different classifier network
architectures on top of the BERT model on the final performance. This study starts with an initial
version of a fine-tuned model and designs four different model variants for comparison by
increasing network depth or simplifying the architecture.

Base Model (Finetunel): The classifier consists of a Dropout layer and a linear layer.

Deeper Models (Finetune2, Finetune3): On top of the base model, one and two additional
combinations of a ReLU activation and a linear layer are added, respectively.

22



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27825

Simplified Model (Finetune4): The classifier of the base model is replaced with a simpler single-
layer linear network.

After determining the optimal classifier architecture, this study uses it as the base model for
comprehensive hyperparameter tuning. This experiment adopts a strategy combining control
variables and grid search, systematically adjusting the following five key hyperparameters:

Learning Rate: [2e-5, 3e-5, 4e-5, 5e-5]

Batch Size: [4, 8, 16, 32, 64]

Weight Decay: [0.001, 0.01, 0.1]

Warmup Ratio: [0.05, 0.06, 0.07, 0.08]

Epochs: [4, 5]

The evaluation metric for the experiment is the accuracy on the validation set. After each training
epoch, the model is evaluated on the validation set, and the model state with the highest validation
accuracy is saved as the best model for the current parameter combination.

3.2. Results and discussion

The first step of this study was to determine an efficient classifier base architecture. Starting with an
initial fine-tuned model, this study conducted a series of comparative experiments by adjusting the
network structure of its top classifier.

* Initial Fine-tuned Model (Base): The starting point for this series of experiments was our initial
fine-tuned model (Finetunel). This model was preliminarily adjusted based on the standard bert-
base-uncased, with its classifier consisting of a Dropout layer and a linear layer. On the test set, this
model achieved an accuracy of 83.13%, serving as the baseline for subsequent optimizations.

* Increasing Classifier Depth: Building on the initial fine-tuned model, this study added a ReLU
activation function and a second linear layer after the original linear classification layer (Finetune?2).
This adjustment resulted in a slight increase in model accuracy to 83.19%. Subsequently, this study
attempted to deepen it further by adding a third linear layer (Finetune3), but this time the model
accuracy dropped to 83.07%.

« Simplifying the Classifier Architecture: Given that deepening the classifier network did not
yield significant benefits, this study tried the opposite approach, replacing the classifier in the initial
model with a new, simpler single-layer linear network (Finetune4). Unexpectedly, this simplification
achieved the best result in this series of experiments, with the model accuracy increasing to 83.30%.

Accuracy Impact of Finetune Architecture Variants

83.4 1

Accuracy (%)

Finetunel Finetunez Finetune3 Finetune4

Figure 1. Impact of network architecture on model accuracy

23



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27825

This series of experimental results indicates that, for this study's specific sentence-pair
classification task, the features extracted by the BERT encoder are already highly separable. In this
situation, a complex, deep classifier is not only unnecessary but may also lead to overfitting or
training instability due to the introduction of too many parameters, thereby harming the model's
generalization ability. In contrast, a structurally simpler single-layer linear classifier can more
directly and efficiently utilize BERT's powerful feature representations, ultimately achieving
superior performance.

Therefore, this study decided to adopt this simplified single-layer linear classifier architecture as
the base model for the subsequent global hyperparameter tuning.

After determining the optimal classifier architecture (i.e., the architecture of Finetune4), this
study used it as a basis to conduct large-scale global hyperparameter tuning experiments, aiming to
maximize the model's performance.

To intuitively analyze the impact of individual hyperparameters on model performance, this study
plotted the relationship between each hyperparameter and model accuracy (as shown in Figure 2).

LeamingRatevsAccuracy ' " Batchize vs Accuraq Weight Decay vs Accuracy

xxxx

Epochs

Figure 2. Impact of hyperparameters on model accuracy

From Figure 2, the following patterns can be observed:

1. Learning Rate: Model accuracy shows a trend of first rising and then falling as the learning
rate increases, peaking around 4e-5. This indicates that a learning rate that is too low may lead to
insufficient model convergence, while one that is too high may cause instability in the training
process, thus harming performance.

2. Batch Size: Batch Size is the most significant parameter among all tested. Accuracy
continuously improves as the Batch Size increases from 4 to 8, reaching its highest point at §;
however, as the Batch Size continues to increase, the accuracy drops. This suggests that an overly
large Batch Size may lead to a decrease in the model's generalization ability.

3. Weight Decay and Warmup Ratio: These two parameters also exhibit a nonlinear "parabolic"
relationship, achieving optimal performance around 0.01 and 0.06, respectively. This demonstrates
that appropriate regularization and learning rate strategies are crucial for model convergence.

4. Epochs: Within the tested range of 4 to 5 epochs, increasing the number of training epochs
steadily improves model accuracy, indicating that the model is still in a learning state at this stage
and has not yet shown signs of overfitting. However, by observing the changes in the loss function
during training, it was found that when the number of training epochs reached five, the loss function
showed very little change (see Figure 3). It can be inferred from this that if the number of epochs

24



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27825

were increased to six, overfitting would be highly likely to occur. Therefore, keeping the number of
training epochs at five should be the better choice.

Average Loss vs. Batch Loss across Epoch Settings
Average Loss per Epoch (epochs = 4) Average Loss per Epoch (epochs = 5)

05261

050 0.4851
04109

03474

10 15 20 25 30 35 40 10 15 20 25 30 35 40 as 50
Epoch Epoch

Batch Loss by Epoch (epochs = 4) Batch Loss by Epoch (epochs = 5)

Batch (index) Batch (Index)

Figure 3. Change in average loss and batch loss over training epochs

The scatter plot in the bottom-right corner of Figure 2 displays the experimental results for all
parameter combinations, with the optimal combination achieving a validation set accuracy of
84.52%.

To further quantify the relationships between variables from a statistical perspective, this study
calculated and plotted a correlation matrix heatmap of the hyperparameters and model accuracy (as
shown in Figure 4).

Hyperparameter Correlation Matrix

1.0

0.8

batch_size - 0.6

0.4
weight_decay

[0.2
warmup_ratio 4

0.0

epochs

accuracy o

param_combo -

8

N .
3 <
& &
s S

= &
& & o
& S &

Figure 4. Hyperparameter correlation matrix

This matrix reveals deeper associations:

« Strongest Correlation: There is a strong negative correlation of -0.80 between batch size and
accuracy. This is perfectly consistent with the observations from Figure 2, once again confirming
that the overall trend is that a larger Batch Size leads to lower model accuracy, highlighting its
importance as a key hyperparameter.

25



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27825

* Moderate Correlation: There is a positive correlation of 0.45 between Ir (learning rate) and
accuracy. This reflects that within the parameter range of this experiment, increasing the learning
rate generally had a positive effect, but this masks the nonlinear relationship observed in Figure 2.

» Weak Correlation and Potential Conflict: The correlation between epochs and accuracy is -0.17,
showing a weak negative correlation. This contradicts the intuitive conclusion from Figure 2 that
"more epochs lead to higher accuracy." This is likely due to a Confounding Effect among multiple
variables—that is, some poorly performing parameter combinations (e.g., a very large Batch Size)
may have happened to be set with more training epochs, thus statistically lowering the positive
impact of epochs on a global scale. This phenomenon precisely illustrates that hyperparameter
optimization is a complex nonlinear problem, and single-variable analysis and multi-variable
correlation analysis must be interpreted together.

This chapter, through a two-stage systematic experiment, has deeply investigated the impact of
classifier architecture and key hyperparameters on the performance of a BERT fine-tuned model.
The experimental results show that:

Exploration of the fine-tuning strategy is a crucial first step in optimization. The experiment first
demonstrated that, for this task, a simpler single-layer linear classifier (test set accuracy of 83.30%)
is superior to more complex multi-layer structures, establishing an efficient base architecture for
subsequent optimization.

Batch Size is the most critical hyperparameter affecting model performance. On the optimal
model architecture, this study found the best value to be 8; values that are too large or too small lead
to a significant drop in performance.

Learning rate, weight decay, and warmup ratio all have an optimal range, and deviating from this
range leads to a decrease in performance, validating the necessity of refined tuning.

Through the two-stage strategy of "first optimize the architecture, then tune the parameters," the
model's performance was significantly improved. Ultimately, through systematic hyperparameter
tuning, the model's accuracy on the validation set reached a high of 84.52%, fully demonstrating the
effectiveness of this optimization process.

This study systematically investigated the application and optimization of BERT-based fine-tuned
models in natural language processing tasks. Given that the "pre-training and fine-tuning" paradigm
is powerful yet the fine-tuning process is highly sensitive to model architecture and hyperparameter
settings, this paper proposed and implemented a structured two-stage optimization process, from
"architecture exploration" to "parameter optimization," aiming to provide a set of effective practical
solutions for improving model performance on specific downstream tasks.

Taking the MRPC sentence-pair classification task from the GLUE benchmark as the
experimental platform, the main work and core conclusions of this study can be summarized as
follows:

1. Validated the "Simpler is Better" Fine-tuning Strategy: In the first stage of fine-tuning strategy
exploration, this study found that for the MRPC task, the features extracted by the BERT encoder
are already highly separable. Therefore, a simpler single-layer linear classifier (test set accuracy of

26



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27825

83.30%) outperformed more complex structures that include multiple network layers and Dropout.
This finding challenges the intuitive notion that "deeper models are better" and confirms that
appropriately simplifying the model's top-level architecture is an effective optimization path for
specific tasks.

2. Revealed the Nonlinear Impact of Key Hyperparameters: After determining the optimal
classifier architecture, the second stage of large-scale hyperparameter tuning experiments intuitively
and quantitatively revealed the profound impact of each parameter on model performance. The
experiments showed that learning rate, weight decay, and warmup ratio all have an "optimal range,"
and deviating from this range leads to a performance drop. Among them, batch size was confirmed
to be the most significant hyperparameter, and its improper selection (such as 64 in this experiment)
can even cause a "cliff-like" drop in model performance.

3. Demonstrated the Great Value of a Systematic Optimization Process: Through the two-stage
optimization process proposed in this study, the model's performance was significantly and stably
improved. The experimental results show that through refined architecture selection and parameter
tuning, the model's validation set accuracy can be increased from an unoptimized ~79% to a high of
84.52%. This fully proves that a systematic and rigorous fine-tuning optimization process, rather
than relying on default settings or random trial-and-error, is a necessary condition for fully
unleashing the potential of pre-trained models. As shown in the research by Sujatha and Nimala,
combining multiple pre-trained models and conducting fine-grained parameter tuning can further
enhance the performance of classification tasks [15].

In summary, this paper not only provides specific optimization parameter references for fine-
tuning BERT on sentence-pair classification tasks but, more importantly, offers a transferable,
structured optimization methodology. It emphasizes that in practice, attention should be paid to both
the adaptability of the model architecture and the refined tuning of the training process.

Although this study has reached some valuable conclusions, there are still several limitations, which
also point the way for future research:

Extension to More Tasks and Datasets: The conclusions of this study are primarily based on the
MRPC, a medium-sized sentence-pair classification task. In the future, it is necessary to generalize
and validate this optimization process on more types of tasks (such as sequence labeling, text
generation), more domains, and datasets of different scales to test its universality. For example,
when processing long documents that exceed the model's maximum length limit, special strategies
such as chunking or hierarchical processing may be required [16].

Application to Different Pre-trained Models: This study focused on the bert-base-uncased model.
With the emergence of more advanced and diverse pre-trained models like ROBERTa, ALBERT, and
DeBERTa, future work could explore whether these different model architectures exhibit similar
sensitivities to fine-tuning strategies and hyperparameters, or if there are model-specific
optimization patterns.

Exploration of More Efficient Fine-tuning Paradigms: As the number of model parameters grows
explosively, the computational cost of full fine-tuning the entire model is becoming increasingly
prohibitive [14]. In the future, combining the optimization ideas of this study with Parameter-
Efficient Fine-tuning (PEFT) techniques (such as LoRA [17], Adapter, Prompt Tuning, etc.) will be
a very valuable direction. Investigating whether these efficient fine-tuning methods also follow the
principle of "simplifying the classifier" and how sensitive they are to hyperparameters will be of
great significance for promoting the application of large models in resource-constrained scenarios.

27



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27825

At the same time, methods like knowledge distillation can be explored to transfer the knowledge
from large models to smaller, more efficient models, such as DistilBERT [18].

Adoption of More Advanced Optimization Algorithms: This study used Grid Search for
hyperparameter tuning, which, while systematic, is computationally expensive. Future research
could introduce more advanced automated machine learning (AutoML) techniques, such as
Bayesian Optimization and genetic algorithms, to explore the vast hyperparameter space more
efficiently and at a lower cost to find the global optimum [19]. Furthermore, one could draw
inspiration from hybrid strategies like BlendSearch, which combines Bayesian optimization and
local search as applied in the EcoOptiGen framework. Introducing cost-based pruning and
progressive subsampling methods could also significantly improve optimization efficiency by
eliminating ineffective configurations early in the evaluation of each hyperparameter combination,
which is especially relevant for the increasingly costly fine-tuning of large models.

References

[1] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K. (2019) BERT: Pre-Training of Deep Bidirectional
Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
4171-4186.

[2] Peters, M.E., Ruder, S. and Smith, N.A. (2019) To Tune or Not to Tune? Adapting Pre-Trained Representations to
Diverse Tasks. Proceedings of the 4th Workshop on Representation Learning for NLP, 7-14.

[3] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., ..., Polosukhin, I. (2017) Attention Is
All You Need. Advances in Neural Information Processing Systems, 5998-6008.

[4] Treviso, M., Lee, J.U., Ji, T., van Aken, B., Cao, Q., ..., Schwartz, R. (2023) Efficient Methods for Natural
Language Processing: A Survey. Transactions of the Association for Computational Linguistics, 11, 826-860.

[5] Phang,J., Fevry, T. and Bowman, S.R. (2018) Sentence Encoders on STILTs: Supplementary Training on
Intermediate Labeled-Data Tasks. arXiv preprint arXiv: 1811.01088.

[6] Hao, Y., Dong, L., Wei, F. and Xu, K. (2020) Investigating Learning Dynamics of BERT Fine-Tuning. Proceedings
of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th
International Joint Conference on Natural Language Processing.

[7] Liu, X. and Wang, C. (2021) An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-Trained
Language Models. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2286-2300.

[8] Arase, Y. and Tsujii, J. (2021) Transfer Fine-Tuning of BERT with Phrasal Paraphrases. Computer Speech &
Language, 66, 101164.

[9] Brickman, J., Gupta, M. and Oltmanns, J.R. (2025) Large Language Models for Psychological Assessment: A
Comprehensive Overview. Advances in Methods and Practices in Psychological Science, 8, 1-26.

[10] Wang, C., Liu, S.X. and Awadallah, A.H. (2023) Cost-Effective Hyperparameter Optimization for Large Language
Model Generation Inference. AutoML Conference.

[11] Sun, C., Qiu, X., Xu, Y. and Huang, X. (2019) How to Fine-Tune BERT for Text Classification? China National
Conference on Chinese Computational Linguistics, 194-206.

[12] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O. and Bowman, S.R. (2018) GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding. arXiv preprint arXiv: 1804.07461.

[13] Dolan, W.B. and Brockett, C. (2005) Automatically Constructing a Corpus of Sentential Paraphrases. Proceedings
of the Third International Workshop on Paraphrasing.

[14] Dodge, J., Ilharco, G., Schwartz, R., Farhadi, A., Hajishirzi, H. and Smith, N. (2020) Fine-Tuning Pretrained
Language Models: Weight Initializations, Data Orders, and Early Stopping. arXiv preprint arXiv: 2002.06305.

[15] Sujatha, R. and Nimala, K. (2024) Classification of Conversational Sentences Using an Ensemble Pre-Trained
Language Model with the Fine-Tuned Parameter. Computers, Materials & Continua, 78, 1669-1686.

[16] Kong, J., Wang, J. and Zhang, X. (2022) Hierarchical BERT with an Adaptive Fine-Tuning Strategy for Document
Classification. Knowledge-Based Systems, 238, 107872.

[17] Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S, ..., Chen, W. (2022) LoRA: Low-Rank Adaptation of
Large Language Models. International Conference on Learning Representations.

28



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27825

[18] Sanh, V., Debut, L., Chaumond, J. and Wolf, T. (2019) DistilBERT, a Distilled Version of BERT: Smaller, Faster,
Cheaper and Lighter. Neur[PS EMC2 Workshop.
[19] Schwartz, R., Dodge, J., Smith, N.A. and Etzioni, O. (2020) Green Al. Communications of the ACM, 63, 54-63.

29



