A Review of Typhoon Detection, Tracking and Intensity Estimation Using Deep Learning and Multi-modal Remote Sensing Data
Research Article
Open Access
CC BY

A Review of Typhoon Detection, Tracking and Intensity Estimation Using Deep Learning and Multi-modal Remote Sensing Data

Ke Yu 1*
1 Faculty of Applied Sciences, Macao Polytechnic University, Macao, China, 999078
*Corresponding author: yukeyys04@gmail.com
Published on 14 October 2025
Journal Cover
ACE Vol.191
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-184-6
ISBN (Online): 978-1-80590-129-7
Download Cover

Abstract

Typhoons rank among the most destructive natural disasters globally, inflicting substantial casualties and enormous economic losses across the world each year. Accurate typhoon detection, tracking, and intensity estimation are crucial for disaster warning and risk management. Traditional typhoon monitoring methods primarily rely on numerical weather prediction models and expert judgment, which suffer from limited accuracy and insufficient timeliness. In recent years, the rapid development of deep learning technologies has brought new opportunities to typhoon research, particularly demonstrating significant advantages in multi-modal remote sensing data fusion and automated feature extraction. This paper systematically reviews the current state of typhoon detection, tracking, and intensity estimation technologies based on deep learning, analyzes the application of multi-modal remote sensing data in typhoon monitoring, discusses current technical challenges, and prospects future development trends. Research indicates that deep learning methods show superior performance in automated typhoon feature recognition, temporal sequence modeling, and multi-source data fusion, providing new technical pathways for improving typhoon forecasting accuracy and operational efficiency.

Keywords:

Typhoon detection, Deep learning, Multi-modal remote sensing, Intensity estimation, Tracking algorithm

View PDF
Yu,K. (2025). A Review of Typhoon Detection, Tracking and Intensity Estimation Using Deep Learning and Multi-modal Remote Sensing Data. Applied and Computational Engineering,191,52-58.

References

[1]. Emanuel, K. (2003). Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31(1), 75-104.

[2]. Velden, C., Harper, B., Wells, F., Beven II, J. L., Zehr, R., Olander, T., ... & McCrone, P. (2006). The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bulletin of the American Meteorological Society, 87(9), 1195-1210.

[3]. Kossin, J. P., Knapp, K. R., Vimont, D. J., Murnane, R. J., & Harper, B. A. (2007). A globally consistent reanalysis of hurricane variability and trends. Geophysical Research Letters, 34(4).

[4]. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195-204.

[5]. Lee, J., Im, J., Cha, D. H., Park, H., & Sim, S. (2019). Tropical cyclone intensity estimation based on satellite infrared images using deep learning. Remote Sensing, 11(9), 1032.

[6]. Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J., & Lebair, W. J. (2017). A closer look at the ABI on the GOES-R series. Bulletin of the American Meteorological Society, 98(4), 681-698.

[7]. Schmit, T. J., Gunshor, M. M., Menzel, W. P., Gurka, J. J., Li, J., & Bachmeier, A. S. (2005). Introducing the next-generation advanced baseline imager on GOES-R. Bulletin of the American Meteorological Society, 86(8), 1079-1096.

[8]. King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B. C., Platnick, S., ... & Hubanks, P. A. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 442-458.

[9]. Imaoka, K., Kachi, M., Kasahara, M., Ito, N., Nakagawa, K., & Oki, T. (2010). Instrument performance and calibration of AMSR-E and AMSR2. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 38(8), 13-16.

[10]. Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B., ... & Wilheit, T. (2017). The Global Precipitation Measurement (GPM) mission for science and society. Bulletin of the American Meteorological Society, 98(8), 1679-1695.

[11]. Pradhan, R., Aygun, R. S., Maskey, M., Ramachandran, R., & Cecil, D. J. (2018). Tropical cyclone intensity estimation using a deep convolutional neural network. IEEE Transactions on Image Processing, 27(2), 692-702.

[12]. Chen, R., Wang, X., Zhang, W., Zhu, X., Li, A., & Yang, C. (2019). A hybrid CNN-LSTM model for typhoon formation forecasting. Geoinformatica, 23(3), 375-396.

[13]. Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).

[14]. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).

[15]. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-end object detection with transformers. In European conference on computer vision (pp. 213-229). Springer.

[16]. Zhang, L., Liu, Y., & Liu, Y. (2019). Improved U-Net for building extraction from high resolution remote sensing imagery. In 2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 3187-3190). IEEE.

[17]. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv: 1406.1078.

[18]. Xingjian, S. H. I., Chen, Z., Wang, H., Yeung, D. Y., Wong, W. K., & Woo, W. C. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems, 28, 802-810.

[19]. Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: a survey. Philosophical Transactions of the Royal Society A, 379(2194), 20200209.

[20]. Atrey, P. K., Hossain, M. A., El Saddik, A., & Kankanhalli, M. S. (2010). Multimodal fusion for multimedia analysis: a survey. Multimedia Systems, 16(6), 345-379.

[21]. Wang, Y., Yao, Q., Kwok, J. T., & Ni, L. M. (2020). Generalizing from a few examples: A survey on few-shot learning. ACM Computing Surveys, 53(3), 1-34.

[22]. Zhang, W., Jiang, L., Chen, P., & Zhang, L. (2021). A survey on deep learning based typhoon trajectory and intensity prediction. Neurocomputing, 458, 301-313.

[23]. Jing, L., & Tian, Y. (2020). Self-supervised visual feature learning with deep neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11), 4037-4058.

Cite this article

Yu,K. (2025). A Review of Typhoon Detection, Tracking and Intensity Estimation Using Deep Learning and Multi-modal Remote Sensing Data. Applied and Computational Engineering,191,52-58.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms

ISBN: 978-1-80590-184-6(Print) / 978-1-80590-129-7(Online)
Editor: Hisham AbouGrad
Conference date: 17 November 2025
Series: Applied and Computational Engineering
Volume number: Vol.191
ISSN: 2755-2721(Print) / 2755-273X(Online)