References
[1]. Tang, Y., Yue, F., Guo, K., Li, L., Ke, W. and Chen, W. (2022) Development trends and innovation capacity analysis of all-solid-state lithium battery technology. Energy Storage Science and Technology, 11(1), 359–369.
[2]. Li, H. and Chen, L. (2024) Research on the development of key material systems for solid-state batteries. Strategic Study of CAE, 26(3), 19–33.
[3]. Wang, H., An, H., Shan, H., Zhao, L. and Wang, J. (2021) Research progress on interfaces of all-solid-state batteries. Acta Physico-Chimica Sinica, 37(11), 2007070.
[4]. Goodenough, J.B. and Kim, Y. (2010) Advances and challenges in solid-state batteries: From materials to devices. Chemistry of Materials, 22(3), 587–603.
[5]. Gao, Y., Zhang, S., Song, Y., et al. (2025) Practical application research progress of solid electrolyte sulfide and challenges. Journal of Oil (Oil Processing), 1-16 [2025-08-22]. Retrieved from https: //link.cnki.net/urlid/11.2129.TE.20250807.0854.002
[6]. Issler, J., Fischer, M., Boström, H.L.B., Chapman, K.W., Borkiewicz, O.J., Billinge, S.J.L. and Goodwin, A.L. (2025) Dependence of the crystal structure of Prussian blue on the occupation of interstitial sites. Phys. Chem. Chem. Phys., 27, 11278-11287.
[7]. Zhu, Z., Chen, L., Huang, H., Liu, W., Wang, X., Zhang, Q. and Li, J. (2025) Crystal structure engineering of Prussian blue through a double-acting chelating agent for energy storage devices. J. Mater. Chem. C, 13, 1923-1931.
[8]. Yin, W., He, H., Liu, Z., Zhang, Y., Zhou, X., Wang, J. and Chen, B. (2025) Unconventional hexagonal open Prussian blue analog with enhanced gas adsorption capacity. Nature Communications, 16, 55775.