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With the rapid advancements in generative artificial intelligence (GAI), visual
computing has witnessed transformative changes across a range of applications such as
image synthesis, restoration, super-resolution, 3D reconstruction, and medical imaging. This
review systematically examines the evolution of generative models, from early statistical
approaches to state-of-the-art transformer-based architectures. Key models including
variational autoencoders (VAE), generative adversarial networks (GAN), and diffusion
models are compared in terms of their structure, training stability, image quality, and
suitability for various visual tasks. In addition to technical progress, the review highlights
the ethical, explainability, and safety challenges associated with GAI deployment, especially
in high-stakes fields like healthcare and manufacturing. While GAI enables highly realistic
and semantically meaningful image generation, challenges remain in balancing innovation
with interpretability, computational efficiency, and social responsibility. The paper also
acknowledges the limitations of static literature reviews in a rapidly evolving domain and
calls for ongoing comparative studies and interdisciplinary collaboration to shape a
responsible and sustainable future for generative Al in visual computing.
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With the rapid development of generative Al (GAI) in the field of visual computing, it has shown
great potential in many cutting-edge applications such as image synthesis, editing, super-resolution,
3D reconstruction, and medical imaging [1]. GAI breaks through the limitations of traditional
discriminative models by simulating and generating realistic new data, and promotes the
technological innovation and application diversification of machine vision [2]. However, the
complexity of related technologies, training stability, computing resource requirements, and ethical
and security issues have also brought many challenges to the continued development of this field.
Given that current research mainly focuses on a single model or specific application scenario, lacks
systematic sorting and comparison, this paper aims to review the technological evolution of
generative Al in visual tasks, mainstream model architectures [3], and their application performance
in different fields through a comprehensive literature review.

This paper will mainly adopt systematic literature analysis and inductive summary, covering early
statistical generative models, variational autoencoders (VAE), generative adversarial networks
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(GAN), diffusion models, and the latest architectures based on transformers, focusing on the
performance advantages and disadvantages of each model in key visual tasks such as image
synthesis, restoration, enhancement, and 3D reconstruction. In addition, this article also focuses on
the ethical, explainable and security issues of generative Al technology, and looks forward to future
technology development directions and research hotspots based on the current application status of
high-risk fields such as medical imaging and industrial detection. By comprehensively integrating
existing results, this article aims to provide researchers and application developers with systematic
theoretical support and practical guidance to promote the healthy and sustainable development of
generative Al in visual computing.

Generative modeling originated from statistical and probabilistic methods, aiming to achieve data
generation by characterizing the joint distribution of observed data and latent variables. Early classic
models such as Hidden Markov Model (HMM) and Boltzmann Machine attempted to simulate and
generate samples that conform to statistical characteristics by capturing the transition rules between
states and the inherent probabilistic structure of data. These models have shown certain effects in
fields such as speech recognition and natural language processing. However, when faced with
complex and high-dimensional visual data, this type of traditional generative model exposes obvious
limitations. On the one hand, with the rapid growth of data dimensions, the model parameter space
expands sharply, resulting in a significant increase in computational complexity, and the training
process is time-consuming and difficult to converge; on the other hand, the model's estimation of
parameters depends on precise probabilistic assumptions and approximate methods, and these
assumptions are often difficult to meet the complexity and nonlinear characteristics of actual data,
limiting its ability to express generative effects.A substantial shift came with the introduction of the
Variational Autoencoder (VAE). VAEs have used neural networks to combine deep learning with
probabilistic modeling. Given the complexity of these theoretical relationships, they introduced an
encoder-decoder structure that tends to suggest a mapping of input data into a smooth, continuous
latent space. This made it easier to sample and move between different points in the data space. The
evidence reveals that VAEs were mathematically elegant and relatively stable during training. But
they presumably had a downside. Their images often looked blurry. This was predominantly due to
their use of Gaussian assumptions and the type of loss function typically employed in training [4].

As limitations of the earlier system became obvious, the expedient focus of the research community
seemed to have transitioned to the latter applications. Conditional GANs are one of the initial
significant improvements in this broader evaluation setup. These models have extended the input
with extra information, such as class labels or text descriptions, to help steer the generation process.
This means that generating more specialized outputs became feasible. This is extremely relevant for
controlling tasks such as semantic image synthesis when the model should produce detailed images
conditioned on complex inputs [5]. A breakthrough with autoregressive models and diffusion-based
models emerges. Autoregressive models, such as PixelCNN, generate images one pixel at a time—a
process that is slow but preserves fine details. Diffusion models adopt a different strategy, given the
subtle nature of these findings. They start with random noise and progressively refine the noise into
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a sharp image via a learned denoising process [6]. These models excel in terms of image quality and
stability during training, especially when generating high-resolution images. In addition, the rise of
the Transformer architecture marks a new stage in the development of generative models. It has
shown strong advantages in multimodal data fusion and complex pattern capture, opening up
broader prospects for generative vision tasks[7]. In summary, these technological advances have not
only greatly promoted the performance improvement of generative artificial intelligence, but also
laid a solid foundation for building more efficient, stable and controllable visual generative models
in the future.

2.3. Comparison of mainstream model architectures

The variational autoencoder (VAE) effectively learns the latent representation of data and models
uncertainty through a structured encoding-decoding mechanism. However, due to its Gaussian
distribution assumption and loss function design, the images generated by VAE are usually blurry
and lack details. The generative adversarial network (GAN) can generate clearer and more realistic
visual content through an adversarial training mechanism, but its training process is extremely
challenging and prone to problems such as mode collapse and training instability. It requires
sophisticated hyperparameter adjustment and training techniques to maintain model stability [8]. In
contrast, diffusion models have attracted much attention in recent years due to their significant
advantages in image generation quality and training stability. Although diffusion models usually
require higher computing resources and longer inference time, they can gradually transform random
noise into high-fidelity images, significantly improving the generation effect. As an emerging force
in the field of vision, models based on the Transformer architecture have demonstrated strong
scalability and excellent processing capabilities for multimodal data, and have gradually become an
important direction for promoting the development of generative models.

3. Applications of generative Al in vision tasks
3.1. Image synthesis and restoration

One of the earliest and most common uses of generative Al is image synthesis and restoration.
Within this broader analytical framework, this includes tasks like image inpainting and super-
resolution [9]. Inpainting fills in missing or blocked parts of an image. The model uses surrounding
visual information to guess what should be there. Generative models are well-suited for this task.
They ostensibly learn the structure of images and can restore missing areas in a natural way. Super-
resolution represents another key application, which involves transforming low-resolution images
into high-resolution ones . Given the complexity of these theoretical relationships, GANs and
diffusion models are typically used here. These methods can add fine details that are not present in
the original image, offering perceptually sharper results [10].

3.2. Image enhancement and style transfer

Generative Al plays a significant role in image enhancement. This includes fundamental tasks like
deblurring, denoising, low-light enhancement, and contrast adjustment. These techniques suggest
particular utility when image quality seems compromised due to camera limitations or challenging
environmental conditions. In low-light scenes, the generative models brighten images and adjust
colors, without introducing noise or visual artifacts. These findings show that diffusion models and
transformer-based architectures demonstrate substantial strength in this domain. These models adjust
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lighting while preserving image details by learning complex patterns of light and shadow [11]. This
method can achieve style transfer while basically preserving the image structure. Related models
usually separate the content and style information in the image through disentangling technology,
and then integrate new style elements (such as painting style, lighting changes, or sketch effects)
into the original content. Since this process involves complex image feature modeling and mapping,
this type of technology has been widely used in creative design, mobile applications, and digital
media production. Research further pointed out that the application of generative models in the
image field is continuing to expand. For example, they can automatically convert X-ray images into
MRI-style medical images, or convert satellite remote sensing images into map-like visual
expressions. These examples fully demonstrate the powerful capabilities of generative models in
visual content re-rendering and cross-domain reconstruction and their future application potential..

Generative Al has also gradually expanded to the field of 3D vision, providing a new paradigm for
the acquisition and reconstruction of three-dimensional content. Compared with traditional 3D
modeling methods that usually rely on geometric prior knowledge, explicit rules and a large amount
of manual intervention, generative methods adopt data-driven strategies, which can learn complex
spatial structures and generate realistic three-dimensional content in a more automated way. In
recent years, the emergence of technologies such as Neural Radiance Fields (NeRF) represents an
important breakthrough in this field [12]. NeRF learns from images of multiple two-dimensional
perspectives to build a continuous volume representation, thereby achieving fine reconstruction of
three-dimensional scenes and rendering from new perspectives. This technology does not require
mesh modeling or point cloud priors and has strong versatility and realism. From a functional point
of view, NeRF and its extended models have demonstrated superior performance in processing
complex textures, lighting changes and occluded objects. They support image generation
conditioned on viewpoints, can render high-quality view conversion results, and greatly enhance the
user's immersive experience in virtual reality (VR) and augmented reality (AR) environments. In
addition, generative 3D methods have also brought new possibilities to the fields of digital cultural
relics restoration, game development, film and television production, etc. With the optimization of
training efficiency and the improvement of model generalization ability, 3D modeling based on
generative Al is expected to become a mainstream solution in the future [12].

In high-risk fields such as medicine and manufacturing, generative Al has shown unique application
value, especially in generating synthetic data, enhancing the quality of diagnostic images, and
identifying subtle structures that are difficult to detect with conventional manual inspection. In
medical image analysis, generative models are widely used to generate synthetic CT, MRI, and X-
ray images to expand training datasets to alleviate the problem of insufficient labeled samples [13].
These synthetic images are usually highly anatomically realistic and can effectively support the
training and generalization capabilities of diagnostic classifiers and image segmentation models. In
addition, generative Al is also used for cross-modal image conversion tasks, such as converting MRI
images to CT images or vice versa without requiring patients to undergo double scanning. This type
of method not only improves the accessibility of image data, but also reduces patient radiation
exposure and examination costs to a certain extent. With the continuous improvement of model
accuracy and stability, the application of generative Al in medical imaging is gradually moving from
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research to clinical deployment, promoting the development of personalized medicine and intelligent
diagnostic systems.

The field of generative artificial intelligence has undergone a profound transformation, evolving
from early probabilistic models to sophisticated deep learning architectures that produce highly
realistic and semantically meaningful visual content. Within this broader analytical framework,
generative Al in computer vision has not only expanded the capabilities of machine perception and
generation, but also redefined the nature of visual tasks themselves. From reconstructing missing
image regions to synthesizing three-dimensional virtual environments, generative models enable
machines to understand and reproduce the visual world with unprecedented precision and creativity.

Looking ahead, the success or failure of generative Al in the field of visual tasks will depend on
its ability to achieve an effective balance between technological innovation and social responsibility.
As model architectures become increasingly complex and application scenarios become increasingly
diverse, it is particularly important to build systems that are interpretable, transparent, and fair. In
particular, innovation in architectural design, optimization of efficient training strategies, and
continuous improvement of human-centered evaluation standards will become the core driving force
for the practical application and sustainable development of generative models. For example, in
medical imaging, generative Al can be used to synthesize scarce pathological images to enhance
diagnostic capabilities, but if the model training data is biased, it may lead to misdiagnosis or even
ethical issues. Therefore, while improving performance, mechanisms must be introduced to ensure
the reliability and traceability of model output. For example, in the creative industry, Al-generated
images are widely used in advertising, games, and digital art design, which greatly improves
creative efficiency, but also triggers new controversies in originality and copyright protection.
Therefore, future development requires not only breakthroughs at the algorithm level, but also
interdisciplinary collaboration between researchers, developers, and policymakers to jointly promote
the formulation of technical standards and ethical frameworks to ensure that generative Al serves
society in a safe, inclusive, fair, and beneficial way for the majority of people.

This review systematically traces the technical evolution, mainstream model architectures, and
practical applications of generative artificial intelligence (GAI) in visual computing. From early
probabilistic models to more advanced architectures. The field has undergone rapid and
transformative development, with each generation of models contributing new capabilities.

In practice, GAI has achieved remarkable success in a variety of visual tasks, including image
restoration, enhancement, style transfer, and medical or industrial detection. These models not only
improve technical efficiency, but also introduce novel workflows in areas such as medical diagnosis,
digital content creation, and virtual reality.

This review has some limitations. Given the rapid development of GAI, some of the reviewed
techniques or research results may soon become outdated, highlighting the need for continuous
updates in this field. Future research should prioritize the development of more interpretable,
resource-efficient, and ethical generative models. More comparative studies are also needed to
understand the trade-offs of different architectures in practical applications.
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