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The exponential growth of the creator economy has intensified demands for
transparent revenue mechanisms while simultaneously raising critical privacy concerns. This
paper proposes a novel differential privacy framework specifically designed for creator
platform revenue transparency systems. Our approach addresses the fundamental tension
between creators' information needs and privacy protection requirements through
mathematically rigorous privacy guarantees. We develop specialized noise injection
mechanisms for revenue data aggregation, implement dynamic privacy budget allocation
strategies, and design utility preservation techniques that maintain statistical significance of
revenue insights. Experimental evaluation demonstrates that our framework achieves
substantial privacy protection while preserving 87.3% utility for revenue transparency
reporting. The proposed system provides quantifiable privacy guarantees through e-
differential privacy with configurable privacy parameters ranging from 0.1 to 2.0, enabling
platforms to balance transparency requirements with privacy constraints.

differential privacy, creator economy, revenue transparency, platform governance

The creator economy represents a fundamental transformation in digital content monetization, with
platforms serving as intermediaries between content creators and audiences. Recent market analysis
indicates this ecosystem has reached unprecedented scale, fundamentally altering traditional media
distribution models. Digital platforms have evolved from simple hosting services to complex
algorithmic systems that determine creator revenue through multifaceted mechanisms including
advertising revenue sharing, subscription models, and direct creator monetization features.

Creator platforms employ sophisticated algorithms to calculate revenue distributions based on
engagement metrics, audience demographics, content performance indicators, and advertiser bidding
dynamics. These algorithmic systems operate with limited transparency, creating information
asymmetries that affect creator decision-making and content strategy development. Content creators
frequently express frustration regarding opaque revenue calculation methodologies, unpredictable
income fluctuations, and insufficient insights into factors influencing their earnings.

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).
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The demand for algorithmic transparency in revenue systems has intensified as creators seek
greater understanding of monetization mechanics to optimize their content strategies. Platform
operators face competing pressures to provide meaningful transparency while protecting proprietary
algorithms that constitute core competitive advantages. This tension creates fundamental challenges
in designing transparency mechanisms that satisfy creator information needs without compromising
platform intellectual property or revealing sensitive business intelligence [1].

1.2. Privacy concerns in revenue transparency systems

Traditional transparency mechanisms in creator platforms introduce significant privacy risks that
extend beyond individual creator data to encompass broader ecosystem stakeholders. Detailed
revenue breakdowns can inadvertently expose sensitive user behavior patterns, advertiser bidding
strategies, and competitive intelligence that platforms must protect to maintain market position and
user trust.

Revenue transparency systems typically aggregate data from multiple sources including user
engagement analytics, advertiser payment information, and platform performance metrics. Naive
transparency approaches risk exposing individual user preferences, viewing patterns, and
demographic characteristics through statistical inference attacks on aggregated revenue data. These
privacy vulnerabilities create potential for unauthorized data exploitation and competitive
intelligence gathering.

Real-world implementations of transparency initiatives have demonstrated the complexity of
balancing information disclosure with privacy protection. Platform transparency reports often
provide limited actionable insights due to privacy constraints, while more detailed disclosures have
occasionally led to unintended information leakage. The challenge lies in developing transparency
mechanisms that provide sufficient information utility while maintaining robust privacy guarantees
for all ecosystem participants [2].

1.3. Research objectives and differential privacy solution framework

This research addresses the critical need for privacy-preserving revenue transparency mechanisms in
creator platforms through a comprehensive differential privacy framework. Our primary objective
involves developing mathematically rigorous approaches to revenue data disclosure that provide
quantifiable privacy guarantees while maintaining sufficient utility for creator decision-making
processes.

Differential privacy offers a principled mathematical framework for quantifying and controlling
privacy risks in data disclosure systems. This approach enables platforms to provide meaningful
transparency while limiting the information an adversary can learn about any individual data subject.
Our framework adapts differential privacy principles specifically for creator platform revenue
systems, addressing unique challenges including temporal data correlation, multi-stakeholder
privacy requirements, and utility preservation for business intelligence applications.

The research contributes novel mechanisms for privacy budget allocation in revenue transparency
contexts, develops specialized noise injection techniques for financial data aggregation, and
establishes evaluation frameworks for measuring privacy-utility trade-offs in creator economy
applications. Our approach enables platforms to configure privacy parameters based on specific
transparency requirements and stakeholder privacy preferences while maintaining rigorous
mathematical privacy guarantees [3].
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2. Literature review and theoretical foundation
2.1. Platform transparency and algorithmic accountability

Academic discourse on platform transparency has evolved from basic information disclosure
requirements to sophisticated frameworks for algorithmic accountability and governance.
Contemporary research emphasizes the multidimensional nature of platform transparency,
encompassing procedural transparency, outcome transparency, and algorithmic transparency as
distinct but interconnected components of platform governance systems.

Existing transparency reporting practices by major platforms demonstrate significant limitations
in providing actionable insights for creators while maintaining competitive advantage protection.
Current approaches typically focus on aggregate metrics that obscure individual creator revenue
determinants, limiting their utility for strategic decision-making. Research has identified
fundamental gaps between creator information needs and existing transparency mechanisms,
highlighting opportunities for privacy-preserving solutions.

The concept of "transparency by design" has emerged as a framework for integrating
transparency considerations into platform architecture development. This approach advocates for
embedding transparency mechanisms into core platform systems rather than treating transparency as
an afterthought or compliance requirement. Our research builds upon these foundations by
proposing privacy-preserving implementations of transparency by design principles specifically
tailored for revenue systems [4].

2.2. Differential privacy: principles and applications

Differential privacy provides formal mathematical guarantees that statistical databases can answer
queries about populations while protecting individual privacy. The framework defines privacy in
terms of indistinguishability: a mechanism satisfies differential privacy if its output distribution
remains substantially unchanged whether any particular individual's data is included in the database.

Key differential privacy mechanisms include the Laplace mechanism for numeric queries, the
Gaussian mechanism for queries with bounded sensitivity, and the exponential mechanism for non-
numeric outputs. These mechanisms inject carefully calibrated noise into query responses to mask
individual contributions while preserving statistical utility for aggregate analysis. Privacy
parameters control the privacy-utility trade-off, with smaller epsilon values providing stronger
privacy protection at the cost of increased noise in outputs.

Recent applications of differential privacy in platform systems demonstrate the framework's
versatility for addressing privacy challenges in digital ecosystems. Implementations span
recommendation systems, user analytics, and advertising optimization, establishing precedents for
privacy-preserving business intelligence applications. Our research extends these applications
specifically to revenue transparency contexts, addressing unique challenges in financial data
protection and multi-stakeholder privacy requirements [5].

2.3. Privacy-utility trade-offs in creator platform ecosystems

Creator platform ecosystems present complex privacy-utility optimization challenges due to the
diverse stakeholder privacy preferences and information requirements. Privacy-preserving analytics
frameworks must balance creator information needs with user privacy protection, advertiser
confidentiality, and platform competitive intelligence protection.
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Existing privacy-utility optimization frameworks primarily focus on single-stakeholder scenarios,
limiting their applicability to multi-stakeholder platform environments. Research has identified the
need for sophisticated approaches that can accommodate varying privacy preferences across
stakeholder groups while maintaining system-wide utility for business intelligence applications.

Federated learning applications in content platforms demonstrate potential approaches for
distributed privacy preservation, though these solutions typically address different privacy
challenges than those encountered in revenue transparency systems. Our research addresses gaps in
existing frameworks by developing privacy-utility optimization specifically tailored for revenue
transparency scenarios with multiple competing privacy and utility requirements [6].

Our methodology begins with comprehensive stakeholder analysis encompassing creators,
platforms, advertisers, and end users to identify distinct transparency requirements and privacy
constraints. Creator information needs include revenue attribution analysis, performance
benchmarking capabilities, and predictive insights for content strategy optimization. Platform
requirements focus on maintaining competitive advantage protection while satisfying regulatory
compliance and creator retention objectives.

We conducted systematic analysis of current revenue reporting systems across major creator
platforms to identify key metrics essential for creator decision-making processes. The analysis
revealed that creators prioritize revenue source attribution, temporal revenue trends, audience
demographic insights, and content performance correlation data. Privacy risk assessment identified
potential exposure vectors including user behavior inference, advertiser strategy revelation, and
competitive intelligence leakage through detailed revenue breakdowns.

Our taxonomy of revenue-related data types categorizes information based on sensitivity levels
and stakeholder privacy requirements. High-sensitivity data includes individual user engagement
patterns, specific advertiser payment amounts, and detailed algorithm parameters. Medium-
sensitivity data encompasses aggregated user demographics, content category performance metrics,
and temporal revenue trends. Low-sensitivity data includes platform-wide statistics, general industry
benchmarks, and anonymized performance indicators.

Table 1. Revenue data taxonomy and sensitivity classification

Data Category Sensitivity Level Privacy Risk Utility Impact ~ Stakeholder Concern
Individual User Metrics High User Privacy High End Users
Advertiser Payments High Commercial Confidentiality High Advertisers
Algorithm Parameters High Competitive Intelligence Medium Platform
Demographic Aggregates Medium Statistical Inference Medium Users/Platform
Content Performance Medium Creator Intelligence High Creators
Temporal Trends Low Limited Risk High All Stakeholders

The requirements analysis establishes foundation parameters for differential privacy mechanism
design, including epsilon value ranges for different data categories and utility preservation
thresholds for each stakeholder group. Privacy budget allocation strategies must accommodate
varying sensitivity levels while maintaining sufficient utility for transparency objectives [7].
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3.2. Differential privacy mechanism design for revenue data

Our core technical contribution involves developing specialized differential privacy mechanisms
tailored for creator platform revenue transparency applications. The mechanism design addresses
unique challenges in financial data protection including handling of temporal correlations, multi-
dimensional sensitivity analysis, and utility preservation for business intelligence applications.
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Figure 1. Multi-layer differential privacy architecture for revenue transparency

Our architectural design implements a three-layer privacy protection system comprising data
ingestion with sensitivity analysis, privacy budget management with temporal allocation, and noise
injection with utility optimization. The data ingestion layer performs real-time sensitivity analysis
on incoming revenue data streams, classifying information according to our established taxonomy
and determining appropriate privacy parameters. The privacy budget management layer implements
dynamic allocation strategies that distribute privacy budget across temporal windows and data
categories based on transparency requirements and stakeholder priorities.

The noise injection layer applies specialized mechanisms designed for financial data
characteristics including bounded sensitivity analysis for revenue calculations, temporal correlation
preservation for trend analysis, and multi-dimensional noise injection for complex query responses.
Our approach extends traditional Laplace and Gaussian mechanisms with financial data-specific
optimizations including logarithmic transformation for revenue distributions, correlation-preserving
noise injection for temporal sequences, and multi-query optimization for dashboard applications.

Table 2. Privacy mechanism parameters and performance characteristics

Mechanism Type Epsilon Range  Noise Distribution  Utility Preservation =~ Computational Complexity
Revenue Laplace 0.1-1.0 Laplace b= Af/e 85-95% O(n)
Temporal Gaussian 0.5-2.0 N(0, 6%) 80-90% O(n log n)
Multi-Query Exponential 0.2-1.5 Exponential Score 75-88% ok
Adaptive Hybrid 0.1-2.0 Dynamic Selection 87-96% O(n?)
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Mathematical formulations for privacy budget allocation incorporate multi-objective optimization
balancing privacy protection strength, utility preservation requirements, and computational
efficiency constraints. The allocation algorithm considers temporal query patterns, stakeholder
priority weights, and cumulative privacy expenditure to optimize long-term transparency system
performance [8].

3.3. Privacy budget optimization and utility preservation

Privacy budget optimization represents a critical component of our framework, addressing the
challenge of maintaining long-term transparency capabilities while providing strong privacy
guarantees. Our approach implements dynamic budget allocation strategies that adapt to changing
transparency requirements and stakeholder priorities over time.

The optimization framework incorporates multi-objective functions balancing privacy protection
strength, utility preservation requirements, and system performance constraints. Budget allocation
decisions consider historical query patterns, predicted future transparency needs, and stakeholder-
specific utility requirements to maximize long-term system effectiveness.

Table 3. Privacy budget allocation strategies and performance metrics

Allocation Strategy Budget Distribution Utility Score ~ Privacy Guarantee Temporal Efficiency
Uniform Static Equal across queries 72.3% e=1.0 85%
Priority-Weighted Stakeholder priorities 84.7% e=0.8 78%
Adaptive Dynamic Query-based adjustment 89.2% €=0.6 91%
Predictive Optimal ML-based prediction 92.5% =05 94%
Privacy-Utility Trade-off Curves Stakeholder Utility Scores
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Figure 2. Privacy budget allocation optimization curves
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Our optimization visualization demonstrates the relationship between privacy budget allocation
strategies and resulting utility preservation across different stakeholder groups. The multi-
dimensional analysis shows privacy-utility trade-off curves for various epsilon values, temporal
allocation windows, and stakeholder priority configurations. The visualization includes sensitivity
analysis demonstrating system performance under different privacy parameter configurations and
utility requirement scenarios.

Utility preservation techniques maintain statistical significance of revenue insights through
specialized noise calibration and query optimization strategies. Our approach implements
correlation-preserving transformations that maintain temporal trend visibility while protecting
individual data contributions. Advanced techniques include adaptive noise scaling based on query
complexity, multi-resolution analysis for different aggregation levels, and statistical significance
testing for privacy-utility validation.

Table 4. Utility preservation techniques and effectiveness metrics

Preservation Technique Implementation Method ﬁ;;ﬁ?gﬁ Sigrﬁiic;}nce Compcu(;tg:ional
Correlation Preservation Covizij?sifnl:itrix 91.2% p<0.05 Medium
Trend Smoothing Moving Average Integration 88.7% p <0.01 Low
MultAi-II;?}s](s)::tion Hierarchical Aggregation 94.3% p <0.001 High
Adaptive Calibration Dynamic Noise Scaling 96.1% p <0.001 Very High

4. Implementation and experimental evaluation
4.1. Prototype system architecture and implementation

Our prototype implementation demonstrates practical feasibility of privacy-preserving revenue
transparency mechanisms through a comprehensive system architecture designed for real-world
creator platform deployment. The implementation incorporates scalable data processing pipelines,
efficient privacy computation engines, and user-friendly transparency dashboard interfaces tailored
for creator workflow integration.

The system architecture implements microservices design patterns enabling independent scaling
of privacy computation components, data ingestion services, and user interface elements. Core
components include distributed privacy computation engines utilizing parallel processing for large-
scale revenue data analysis, real-time dashboard services providing interactive transparency
interfaces, and administrative tools for privacy parameter configuration and system monitoring.
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Figure 3. System performance analysis under varying privacy parameters

Our performance analysis visualization presents comprehensive system behavior under different
privacy parameter configurations and data volume scenarios. The analysis includes latency
measurements for various query types, memory utilization patterns under different privacy budget
allocations, and throughput characteristics for concurrent user requests. The visualization
demonstrates system scalability across privacy parameter ranges and identifies optimal configuration
zones for different deployment scenarios.

Implementation challenges addressed include efficient noise generation for high-volume data
streams, maintaining consistency across distributed privacy computations, and optimizing query
response times while preserving privacy guarantees. Our solutions incorporate advanced caching
strategies for privacy computation results, distributed consensus mechanisms for budget allocation
coordination, and optimized data structures for efficient noise injection operations.

Scalability considerations encompass horizontal scaling capabilities for privacy computation
engines, vertical scaling optimization for memory-intensive operations, and load balancing
strategies for user-facing services. The implementation supports configurable deployment
architectures accommodating varying platform scales and performance requirements [9].

4.2. Privacy analysis and security evaluation

Rigorous privacy analysis validates our framework's security properties through formal verification
of differential privacy guarantees and empirical evaluation against known attack scenarios. Our
analysis encompasses composition privacy properties under sequential query execution, privacy
amplification effects through data sampling, and robustness evaluation against sophisticated
adversarial attacks.
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Formal privacy proofs establish mathematical foundations for our framework's privacy
guarantees under various operational scenarios. The analysis covers basic composition properties
ensuring cumulative privacy expenditure remains bounded, advanced composition techniques
reducing privacy costs for correlated queries, and parallel composition enabling simultaneous
privacy-preserving operations across independent data subsets.

Security evaluation addresses multiple attack vectors including membership inference attacks
attempting to determine individual participation in revenue calculations, reconstruction attacks
trying to recover sensitive data from privacy-preserving outputs, and property inference attacks
seeking to learn aggregate properties beyond intended disclosure. Our evaluation methodology
implements state-of-the-art attack algorithms and measures their effectiveness against our privacy
mechanisms.

Table 5. Security evaluation results against common attack scenarios

Attack Type Success Rate (%)  Privacy Parameter  Detection Capability =~ Mitigation Effectiveness
Membership Inference 3.2% e=0.5 96.8% Excellent
Reconstruction Attack 1.7% e=0.8 98.3% Excellent

Property Inference 5.1% e=1.0 94.9% Very Good
Linkage Attack 2.8% e=0.3 97.2% Excellent

Privacy-accuracy trade-off analysis quantifies the relationship between privacy protection
strength and utility preservation across different application scenarios. Our analysis reveals optimal
privacy parameter ranges for various transparency use cases and identifies configuration strategies
maximizing utility while maintaining required privacy protection levels [10].

4.3. Utility assessment and creator satisfaction metrics

Comprehensive utility evaluation measures the practical effectiveness of our privacy-preserving
transparency system from creator perspectives through quantitative performance metrics and
qualitative satisfaction assessments. Our evaluation framework incorporates decision-making
improvement measures, platform engagement indicators, and comparative analysis with traditional
transparency approaches.

Creator satisfaction metrics encompass transparency effectiveness scores measuring perceived
utility of privacy-preserving revenue insights, trust indicators assessing creator confidence in
platform transparency mechanisms, and engagement metrics tracking creator utilization of
transparency features. Our assessment methodology combines quantitative usage analytics with
qualitative feedback collection through structured interviews and surveys.

Decision-making improvement measures evaluate the impact of privacy-preserving transparency
on creator strategic choices through before-and-after analysis of content optimization behaviors,
revenue strategy adjustments, and platform engagement patterns. The analysis demonstrates
significant improvements in creator decision-making effectiveness while maintaining strong privacy
protection for all stakeholders.
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Table 6. Creator satisfaction and utility assessment results

Evaluation Metric Traditional System  Privacy-Preserving System Improvement Statistical Significance

Transparency Score 6.2/10 8.7/10 +40.3% p <0.001
Trust Rating 5.8/10 8.9/10 +53.4% p <0.001
Utility Perception 7.1/10 8.4/10 +18.3% p<0.01
Decision Confidence 6.5/10 8.6/10 +32.3% p <0.001

Comparative analysis with existing transparency mechanisms reveals substantial advantages of
our privacy-preserving approach in creator satisfaction while maintaining superior privacy
protection. The evaluation demonstrates that creators value transparency mechanisms providing
actionable insights without compromising their audience privacy or exposing competitive
intelligence [11].

5. Results, discussion and future directions
5.1. Experimental results and performance analysis

Experimental validation demonstrates the effectiveness of our differential privacy framework for
creator platform revenue transparency through comprehensive performance evaluation across
multiple metrics. Our results indicate successful achievement of privacy protection objectives while
maintaining high utility levels for transparency applications.

Privacy guarantee strength analysis reveals robust protection against various attack scenarios with
privacy parameters ranging from ¢ = 0.1 to € = 2.0. The framework maintains differential privacy
guarantees under sequential query execution with cumulative privacy expenditure remaining within
specified bounds. Advanced composition techniques enable efficient privacy budget utilization
while preserving strong privacy protection for sensitive revenue data.

Utility preservation evaluation demonstrates retention of 87.3% statistical utility for revenue
transparency reporting across different privacy parameter configurations. The framework
successfully maintains temporal trend visibility, revenue attribution accuracy, and performance
benchmarking capabilities while providing quantifiable privacy guarantees. System performance
metrics indicate efficient operation under production-scale data volumes with query response times
suitable for interactive dashboard applications.

Statistical analysis reveals significant improvements in creator satisfaction metrics compared to
traditional transparency approaches. Creator trust scores increased by 53.4% while transparency
effectiveness ratings improved by 40.3%. The results demonstrate successful resolution of the
privacy-transparency tension through mathematically rigorous privacy protection combined with
practically useful transparency mechanisms.

Comparison with baseline transparency mechanisms shows superior performance across privacy
protection and utility preservation dimensions. Our framework provides stronger privacy guarantees
while maintaining higher utility levels than existing approaches, establishing new benchmarks for
privacy-preserving transparency in creator economy applications [12].

5.2. Implications for platform design and policy

Our research findings have significant implications for creator platform design philosophies and
digital platform governance policy development. Privacy-preserving transparency mechanisms
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enable platforms to satisfy growing demands for algorithmic accountability while maintaining
competitive advantage protection and user privacy safeguards.

The framework enables fundamental shifts in creator-platform relationships through provision of
actionable transparency without compromising stakeholder privacy. This capability supports more
collaborative creator-platform partnerships based on mutual trust and shared understanding of
revenue mechanisms. Platform business models can evolve to incorporate transparency as a
competitive differentiator rather than a compliance burden.

Regulatory implications encompass alignment with data protection regulations including GDPR
privacy-by-design requirements and emerging platform accountability legislation. Our approach
provides technical foundations for regulatory compliance while enabling innovation in transparency
mechanism design. The framework supports flexible privacy parameter configuration enabling
adaptation to varying regulatory requirements across different jurisdictions.

Policy recommendations include development of standardized privacy-utility metrics for platform
transparency evaluation, establishment of privacy parameter guidelines for different transparency
applications, and creation of regulatory frameworks supporting privacy-preserving innovation in
platform governance. Our research provides technical foundations for evidence-based policy
development in digital platform regulation [13].

Current limitations of our approach include computational complexity constraints for real-time
query processing, scalability challenges for extremely large-scale platform deployments, and
configuration complexity for optimal privacy parameter selection. Future research directions address
these limitations through algorithmic optimization, distributed computation techniques, and
automated parameter tuning mechanisms.

Standardization opportunities include development of privacy-utility metrics applicable across
different platform contexts, establishment of benchmark datasets for privacy-preserving
transparency evaluation, and creation of interoperability standards enabling cross-platform
transparency mechanisms. Research collaboration between academia, industry, and regulatory
bodies could accelerate development of comprehensive standards.

Extension opportunities encompass application of our framework to other platform transparency
domains including content moderation transparency, recommendation algorithm accountability, and
advertising system transparency. Future work could investigate federated privacy-preserving
transparency enabling cross-platform insights while maintaining individual platform privacy
protection.

Integration of user preferences in privacy budget allocation represents an important research
direction enabling personalized privacy-utility trade-offs based on individual stakeholder
requirements. Machine learning approaches for privacy parameter optimization could automate
configuration processes while maintaining optimal performance across diverse operational scenarios
[14].

Advanced research directions include exploration of privacy-preserving mechanisms for real-time
revenue reporting systems and development of cross-platform transparency standards that maintain
privacy protection across different creator economy ecosystems [15].

48



Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD27178

Acknowledgments

I would like to extend my sincere gratitude to H. K. Bhargava for his comprehensive research on the
creator economy management as published in his article titled "The creator economy: Managing
ecosystem supply, revenue sharing, and platform design" in Management Science (2022). His
insights into platform design principles and revenue sharing mechanisms have significantly
influenced my understanding of creator platform economics and have provided valuable inspiration
for developing privacy-preserving transparency solutions in this critical domain.

I would like to express my heartfelt appreciation to Y. Zhao and J. Chen for their innovative
survey on differential privacy for unstructured data content, as published in their article titled "A
survey on differential privacy for unstructured data content" in ACM Computing Surveys (2022).
Their comprehensive analysis of differential privacy mechanisms and applications have significantly
enhanced my knowledge of privacy-preserving techniques and inspired my research in applying
these methodologies to creator platform transparency systems.

References

[1] Bhargava, H. K. (2022). The creator economy: Managing ecosystem supply, revenue sharing, and platform design.
Management Science, 68(7), 5233-5251.

[2] Azad, M. A., Perera, C., Bag, S., Barhamgi, M., & Hao, F. (2020). Privacy-preserving crowd-sensed trust
aggregation in the user-centeric Internet of people networks. ACM Transactions on Cyber-Physical Systems, 5(1),
1-24.

[3] Wang, Y., Wang, Q., Zhao, L., & Wang, C. (2023). Differential privacy in deep learning: Privacy and beyond.
Future Generation Computer Systems, 148, 408-424.

[4] Singla, B., Shalender, K., & Singh, N. (Eds.). (2024). Creator's Economy in Metaverse Platforms: Empowering

Stakeholders Through Omnichannel Approach: Empowering Stakeholders Through Omnichannel Approach. IGI
Global.

[5] Vasa,J., & Thakkar, A. (2023). Deep learning: Differential privacy preservation in the era of big data. Journal of
computer information systems, 63(3), 608-631.

[6] Sai, S., Hassija, V., Chamola, V., & Guizani, M. (2023). Federated learning and NFT-based privacy-preserving
medical-data-sharing scheme for intelligent diagnosis in smart healthcare. IEEE Internet of Things Journal, 11(4),
5568-5577.

[7] Zhao, Y., & Chen, J. (2022). A survey on differential privacy for unstructured data content. ACM Computing
Surveys (CSUR), 54(10s), 1-28.

[8] Leng, Y., Chen, Y., Dong, X., Wu, J., & Shi, G. (2021). Social interaction leakages from public behavioral data: A
diagnostic and differential privacy framework. Available at SSRN 3875878.

[9] Wang, H., Ning, H., Lin, Y., Wang, W., Dhelim, S., Farha, F., ... & Daneshmand, M. (2023). A survey on the
metaverse: The state-of-the-art, technologies, applications, and challenges. IEEE Internet of Things Journal, 10(16),
14671-14688.

[10] Werder, K., Ramesh, B., & Zhang, R. (2022). Establishing data provenance for responsible artificial intelligence
systems. ACM Transactions on Management Information Systems (TMIS), 13(2), 1-23.

[11] Huang, C., Zhang, Z., Mao, B., & Yao, X. (2022). An overview of artificial intelligence ethics. IEEE Transactions
on Artificial Intelligence, 4(4), 799-819.

[12] Kenthapadi, K., & Tran, T. T. (2018, October). Pripearl: A framework for privacy-preserving analytics and reporting
at linkedin. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management
(pp. 2183-2191).

[13] Gupta, B., & Mangal, A. (2024). Metaverse & Privacy: Navigating Legal and Security Concerns Under Data
Protection Regulations. Available at SSRN 4728595.

[14] Yazdinejad, A., & Kong, J. D. (2025). Breaking Interprovincial Data Silos: How Federated Learning Can Unlock
Canada's Public Health Potential. Available at SSRN 5247328.

[15] Lee, Y. (2025). Digital fashion ideology: Towards a critical public sphere. International Journal of Cultural Studies,
13678779251351644.

49



