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In recent years, with the rapid development of cross-modal learning, pretrained
models such as CLIP have demonstrated powerful zero-shot capabilities in image-text
alignment tasks, making them central to multimodal research. However, a key challenge
remains: how to effectively transfer these capabilities while preserving the strengths of
CLIP. To address this, we propose a parameter-efficient multi-task fine-tuning framework—
Multi-Task CLIP-Adapter. By inserting lightweight Adapter modules after the frozen CLIP
encoder, our method enables unified adaptation across multiple tasks, including
classification, image-text retrieval, and regression. Experimental results show that our
approach achieves an 8%—12% performance improvement with less than 0.2% additional
parameters, while maintaining the original model’s zero-shot capability. Compared to the
original CLIP and conventional transfer strategies, the Multi-Task CLIP-Adapter offers
significant advantages in parameter efficiency and task generalization, paving a new path for
scalable applications of large multimodal models.
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With the advancement of artificial intelligence, research in the field has gradually shifted from
unimodal approaches to multimodal information fusion involving text, images, and speech [1].
Meanwhile, fueled by self-supervised pretraining and the increasing availability of computational
resources, multimodal models have evolved from task-specific networks to unified vision-language
frameworks [2]. Ensuring that such models perform robustly and effectively across a wide range of
downstream tasks has become a central focus in both academia and industry. Early multimodal
methods typically employed a dual-encoder architecture, extracting image features via ViT [3] and
text features via BERT [4], with retrieval achieved through contrastive learning in a shared
embedding space. Subsequently, a series of large-scale pretrained models significantly advanced
cross-modal alignment. CLIP [3] pioneered the contrastive learning paradigm between images and
text with natural language prompts, pretraining on 400 million image-text pairs. This enabled a
single static model to perform zero-shot classification on hundreds of datasets, ushering in the era of
prompt-driven visual modeling. BLIP [5] further introduced Bootstrapping Language-Image Pre-
training, markedly enhancing performance on image captioning and visual question answering
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(VQA). BLIP-2 [6] froze the vision encoder and incorporated a lightweight query transformer (Q-
Former) to achieve efficient image-text alignment, laying the interface foundation for large
multimodal language models. ALIGN [7] trained on 1.8 billion noisy web image-text pairs,
demonstrated that large-scale data could compensate for label noise in retrieval tasks, achieving
strong cross-domain generalization. Flamingo [8] froze the ViT-G/14 backbone and trained only the
cross-modal causal attention layers, enabling the model to quickly adapt to open-domain image-text
dialogues and multi-image scene understanding with as few as 16 shots, showcasing the potential for
rapid instruction tuning.

As multimodal applications continue to expand, there is a growing demand for foundational
models to adapt flexibly across multiple tasks. In response to this need, the Adapter technique [9]
has emerged. By inserting small-scale bottleneck layers into frozen large models, Adapters enable
efficient adaptation to various downstream tasks with minimal trainable parameters. This approach
significantly reduces the computational cost of fine-tuning while maintaining strong performance,
making it a powerful tool for enhancing the scalability of large models.Neil Houlsby et al.
demonstrated that inserting Adapter layers into a frozen BERT model could achieve performance
comparable to full fine-tuning on natural language inference (NLI) tasks, while drastically reducing
the number of trainable parameters [10]. Similarly, Hao Chen et al. introduced convAdapter modules
into the attention and MLP layers of ViT, specifically tailored for visual tasks, and achieved
performance gains on the ImageNet classification benchmark [11]. Yi-Lin Sung further applied
Adapters to ViILT [12], enhancing vision-language joint understanding with lightweight parameter
updates, and achieved near full fine-tuning performance on VQA tasks [13].However, these
improvements have largely focused on optimizing performance for single tasks, such as
classification, retrieval, image captioning, or VQA, making it difficult to maintain consistent
effectiveness across multiple tasks in a unified setting.

To address this limitation, we propose Multi-Task CLIP-Adapter, which introduces lightweight
bottleneck adapter layers after the frozen CLIP vision and text encoders. By adding only ~0.2%
trainable parameters, our method establishes a compact mapping between shared representations and
task-specific semantics. Through few-shot fine-tuning, we achieve an average performance
improvement of 8%—12% across three diverse tasks: image classification, image-text retrieval, and
age regression, while preserving the original model’s strong zero-shot capability. Extensive
experiments show that our approach outperforms the original CLIP model with single-task fine-
tuning in terms of parameter efficiency and multi-task generalization. This work offers a novel and
practical path toward building efficient and scalable large multimodal models.
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Figure 1. Structure of the Multi-Task CLIP-Adapter Mode

This study aims to achieve efficient transfer and performance enhancement of CLIP in
downstream tasks while preserving the cross-modal capabilities of the pretrained model.
Specifically, our approach is built upon the CLIP architecture and incorporates lightweight Adapter
modules to enable parameter-efficient fine-tuning. In the following sections, we provide a detailed
explanation of the CLIP backbone and the underlying principles of the Adapter mechanism.

2.1. CLIP

The CLIP framework [1], proposed by OpenAl, consists of an image encoder and a text encoder.
Both encoders output d-dimensional feature representations and are jointly pretrained on large-scale
image-text pairs using contrastive learning, thereby acquiring cross-modal alignment capabilities.
The image encoder maps images into feature vectors, while the text encoder maps textual
descriptions into corresponding feature vectors. By projecting both modalities into a shared
embedding space, CLIP enables cross-modal interaction and fusion of information.

aDuring the pretraining phase, given a set of N paired samples < vj, t; > , each image v; and its
corresponding text t; are encoded into feature vectors through their respective encoders:
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To mitigate scale discrepancies between modalities, we apply L2 normalization to the image and
text projection vectors independently:
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Given a batch containing N image-text pairs {(v;, t;)}1v, , a pairwise similarity matrix is defined
as follows:
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Here, 7 > 0 is a learnable temperature parameter. CLIP adopts a symmetric cross-entropy loss:

1 X i i
beur = —5% lo ]\e]Xp (5) + log ;Xp(s )
i=1 Ej:l €xXp (Sij) Zj:l €xXp (Sji)

Here, N denotes the number of image-text pairs within a training batch, and S;; represents the
similarity between the i-th image encoding and the j-th text encoding.

The symmetric cross-entropy loss encourages high similarity for matched image-text pairs while
suppressing the similarity of mismatched pairs.After large-scale pretraining on 400 million image-
text pairs collected from the web, CLIP demonstrates strong zero-shot capabilities in classification,
retrieval, and semantic alignment tasks, laying a solid foundation for efficient downstream fine-
tuning.

Traditional full fine-tuning strategies require updating all parameters of the entire model, which
incurs high computational costs, large memory consumption, and often leads to catastrophic
forgetting—undermining the performance of the pretrained model on foundational tasks.To address
these issues, this study draws on successful practices from the field of natural language processing
and introduces lightweight adapter modules to enable efficient fine-tuning of the CLIP model.

In order to retain CLIP’s zero-shot generalization capabilities while adapting effectively to a
variety of downstream tasks—including image classification, cross-modal retrieval, and age
regression—lightweight bottleneck adapters are inserted after both the image encoder and text
encoder of CLIP.These adapters allow for parameter-efficient fine-tuning of the large-scale
pretrained model by introducing only a small number of trainable parameters, while keeping the
original weights frozen. This approach not only captures task-specific information but also preserves
the original cross-modal alignment to the greatest extent, thereby achieving both efficiency and
performance gains. The implementation details are as follows:

After the raw input is processed by either the image encoder or the text encoder, it produces an
output feature vector h € R? . The Adapter module first applies a down-projection to h :

a=ReLU(Wh+b), WeR™ beR",

Here, r is the bottleneck dimension, which is much smaller than d, and a ReLU activation is
applied to introduce non-linear capability. Subsequently, a is up-projected and added to the original
feature via a residual connection:
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h'=h+Wa+b WeR> beR%

By introducing non-linear transformations and residual connections, the Adapter module not only
enhances the model’s representational capacity but also effectively mitigates issues such as gradient
vanishing and performance degradation. Compared to full fine-tuning, Adapter-based tuning
introduces less than 0.2% additional parameters, significantly reducing training overhead and
making it well-suited for large-scale deployment and multi-task parallel scenarios.

Unlike prompt-based tuning methods such as CoOp, which rely on learnable prompts, Adapter
modules are inserted after both the image encoder and the text encoder to enable the capture of task-
specific features across different modalities. The overall model architecture is illustrated in Figure 1.

During fine-tuning, all original weights of CLIP—including those of the encoders and the
projection heads—remain frozen, and only the parameters of the Adapter modules and the task-
specific heads are updated. This design not only preserves the strong semantic alignment capabilities
of the pretrained model but also significantly improves generalization performance on downstream
tasks.

3. Experiments
3.1. Experimental setup

The experiments were conducted on a Windows operating system with an NVIDIA RTX 3060 GPU
(8GB memory). The software environment included Python 3.10 and the deep learning framework
PyTorch 2.1.2 with CUDA 12.1 support.

3.2. Evaluation metrics
3.2.1. Evaluation metrics for classification tasks

For classification tasks, we evaluate model performance using four metrics: Accuracy, Precision,
Recall, and F1-score.

Accuracy measures the proportion of correctly classified samples to the total number of samples,
and is defined as:

TP+TN
TP+ FN+FP+TN

Accuracy =

Here, TP denotes the number of true positives correctly predicted as positive, TN denotes the
number of true negatives correctly predicted as negative, FP refers to the number of false positives
(incorrectly predicted as positive), and FN refers to the number of false negatives (incorrectly
predicted as negative).

Precision measures the proportion of correctly predicted positive instances among all predicted
positives, and is defined as:
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TP

Precision = Wp

Recall measures the proportion of actual positive instances that are correctly predicted as
positive, and is defined as:

TP

Recall = m

F1-score measures the harmonic mean of Precision and Recall, aiming to balance both metrics. It
is defined as:

Precision x Recall

Fl1=2x
Precision + Recall

3.2.2. Evaluation metrics for text-to-image retrieval

In image-text retrieval tasks, we primarily evaluate model performance using Precision@K and
mean Average Precision at K (mAP@K).

Precision@K measures the proportion of relevant items among the top-K retrieved results.
Specifically, Precision@5 and Precision@10 used in this study indicate the proportion of relevant
(i.e., correctly matched) items within the top 5 and top 10 retrieved results, respectively.

A higher Precision@K value implies that the model retrieves more relevant content in the top
results, reflecting better real-world retrieval effectiveness. The definition of Precision@K is as
follows:

T
PrecisionQK = —
recision 7

Here, T denotes the number of relevant items among the top-K retrieved results.

mAP@K (mean Average Precision at K) represents the mean of the average precision scores
across all queries. For each query, the average precision is calculated based on the top-K retrieved
results, and then the mean is taken over all queries.

This metric considers both the relevance and the ranking position of retrieved items, making it a
comprehensive indicator of retrieval performance. The definition of mAP@K is as follows:

Q
map—21 Y AP(g)
Q =

where AP(q) is the average precision for the g-th query within the top-K results, defined as:
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> iy (PrecisionQk x rel(k))

AP ,
number of relevant items

rel(k) is an indicator function that equals 1 if the item at position k is relevant, and 0 otherwise..
3.2.3. Regression task metrics

For regression tasks, we evaluate model prediction performance using the following four metrics:
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).

MAE measures the average absolute difference between the predicted values and the true values,
and is defined as:

n

MAE == 3|y g

i=1

where y; is the ground truth value of the i-th sample, ¥; is its predicted value, and n is the total
number of samples.

MSE calculates the mean of the squared differences between predicted and true values, and is
defined as:

MSE:%Z(%,_@Z)z

1=1

RMSE is the square root of MSE. It is also used to quantify the difference between predicted
values and actual values, but by converting the error into the same unit as the target variable, it
provides a more intuitive interpretation of the model’s prediction error. RMSE is defined as:

1 n ~ 2
RMSE = |~ (yi - y)

1=1

3.3. Comparative experiments

To verify the effectiveness of the proposed method in multi-task scenarios, we use the original CLIP
model as a baseline and introduce Adapter modules to construct the Multi-Task CLIP-Adapter
model. Comparative experiments are conducted on three tasks: image classification, image-text
retrieval, and age regression. The experimental results are summarized in Table 1.

27



Proceedings of CONF-MLA 2025 Symposium: Applied Artificial Intelligence Research
DOI: 10.54254/2755-2721/2025.BJ26532

Table 1. Comparative results between the proposed method and the baseline model

Classification Text-to-Image Retrieval Age Regression
Accurac Precisio Recall F1 Precision@ Precision@l mAP@1 MA MSE RMS
y n score 5 0 0 E E
CLIP 0.8779 0.8817 0'277 0.8779 0.96 0.96 0.9801 6.18 61'1 8.19
Multi-Task CLIP- 0.9435 0.9438 0.943 0.9435 0.98 0.99 0.9835 5.28 49.3 7.03
Adapter 5 7

The evaluation of the model’s classification capability was conducted on the CIFAR-100 dataset,
with Accuracy, Precision, Recall, and Fl-score on the test set as the main metrics. Experimental
results show that the original CLIP model achieved an accuracy of 0.8779, a precision of 0.8817, a
recall of 0.8779, and an F1-score of 0.8779, indicating stable overall performance.

After introducing Adapter modules and freezing all parameters of the original model (training
only the Adapter for 5 epochs), the Multi-Task CLIP-Adapter model demonstrated significant
improvements across all four metrics. The accuracy and Fl-score both increased to 0.9435,
suggesting that the lightweight Adapter mechanism effectively enhances the model’s feature
extraction and discrimination capabilities in classification tasks.

For the image-text retrieval task, experiments were also conducted on the CIFAR-100 dataset.
Given a textual description, the model is required to retrieve the most relevant image from a
collection. We adopt Precision@5, Precision@10, and mAP@10 as evaluation metrics to assess
retrieval relevance in the top-ranked results. The original CLIP model achieved 0.96 for both
Precision@5 and Precision@10, and 0.9801 for mAP@10. In contrast, after training under the same
conditions, the Multi-Task CLIP-Adapter improved to 0.98 on Precision@5, 0.99 on Precision@10,
and 0.9835 on mAP@]10. These results demonstrate that the introduction of Adapters not only
preserves the cross-modal alignment capability of CLIP, but also enhances retrieval performance in
top-ranked results, indicating stronger practical retrieval ability.

In the age regression task, the CelebA dataset was used for training and evaluation. The goal is to
predict the numerical age from a given facial image. The performance was assessed using MAE,
MSE, and RMSE. With a simple linear head trained for 5 epochs, the original CLIP model achieved
an MAE of 6.18, MSE of 67.14, and RMSE of 8.19. In comparison, the Multi-Task CLIP-Adapter,
incorporating both Adapter and Linear modules and trained for the same number of epochs, reduced
the MAE to 5.28, and the MSE and RMSE to 49.37 and 7.03, respectively, showing superior
numerical regression fitting ability.

Overall, across the three tasks, the Multi-Task CLIP-Adapter significantly improves accuracy in
image classification and image-text retrieval tasks, and reduces prediction error in the age regression
task, all without requiring full-parameter updates of the original large-scale model. This method
effectively balances computational efficiency with performance gains, demonstrating strong
generalization and transferability, and providing an efficient and practical solution for lightweight
optimization in multi-task scenarios.
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Table 2. Comparison between CLIP and ResNet18

Classification Age Regression
Method
Accuracy Precision Recall F1-score MAE MSE RMSE
CLIP 0.8779 0.8817 0.8779 0.8779 6.18 67.14 8.19
ResNet18 0.1316 0.1074 0.1316 0.1005 40.39 1930.69 43.94

In the classification task, we employed the classical convolutional neural network ResNetl8,
which was pretrained on the CIFAR-100 dataset. After pretraining, the model was transferred to the
CIFAR-10 dataset, with the output layer replaced by a 10-class classifier. Under zero-shot conditions
—i.e., without any further fine-tuning—the model achieved only 13.16% accuracy on the CIFAR-10
test set.In contrast, we evaluated the CLIP model on the same test set under zero-shot inference
conditions. Without any fine-tuning, CLIP achieved a classification accuracy of 87.79%, with
Precision, Recall, and Fl-score all exceeding 87%, significantly outperforming the traditional
convolutional model.

In the facial age regression task, we transferred the pretrained ResNet18 model to the CelebA
dataset, using facial images as input to predict corresponding ages. The performance was evaluated
using MAE, MSE, and RMSE. Results show that the CLIP model also maintained strong
performance in the regression task, achieving an MAE of 6.18 and an RMSE of 8.19, indicating low
prediction error and high stability.In contrast, the ResNet18 model performed poorly, with an MAE
as high as 40.39 and an RMSE of 43.94, reflecting a significant level of error that fails to meet even
the minimum usability standards.

These experimental results demonstrate that traditional models exhibit poor generalization when
confronted with datasets involving distribution shifts or semantic transfer. In contrast, the CLIP
model, pretrained through large-scale image-text contrastive learning, successfully aligns visual and
textual semantic spaces. This endows CLIP with strong semantic generalization and zero-shot
inference capabilities, enabling accurate classification without the need for additional
training.Overall, the experiments highlight the potential of CLIP for cross-semantic understanding in
vision transfer tasks.

This paper addresses the adaptation challenges of current large-scale multimodal models in multi-
task transfer scenarios by proposing the Multi-Task CLIP-Adapter approach. Without compromising
the original pretrained capabilities of CLIP, the proposed method enables efficient transfer and
performance enhancement across three representative tasks: image classification, image-text
retrieval, and age regression.Experimental results demonstrate that the proposed method
significantly outperforms the original CLIP model in all multi-task scenarios, achieving consistent
improvements across all evaluation metrics. Notably, while preserving CLIP’s zero-shot capabilities,
our method introduces only 0.2% additional trainable parameters and achieves over 10% average
performance gain. Furthermore, ablation studies confirm the advantages of our approach in terms of
model efficiency and transferability, showcasing its promising potential for real-world
applications.In future work, we plan to explore the applicability of this method to more complex
tasks such as multilingual understanding and cross-modal generation. We also aim to further
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improve the flexibility and generalization of multi-task learning by integrating mechanisms such as
prompt tuning and LoRA.
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