Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOLI: 10.54254/2755-2721/2025.LD26179

Optimal Convergence and Edge Efficiency Cloud Prediction
for Multi-domain Lightweight Models

Chen Wang

School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China
2310211129@hbut.edu.cn

To address the growing demand for efficient natural language processing
capabilities on resource-constrained edge devices, lightweight transformer architectures like
Nano-GPT have emerged as essential solutions. However, their operational efficiency is
profoundly influenced by the domain characteristics of their training data. This
comprehensive investigation employs Nano-GPT progressively trained on three distinct
datasets—Twitter conversations, scientific publications, and Shakespearean literature—
identifying optimal validation loss at 20,000 training iterations while demonstrating peak
text generation performance. Given significant variations in convergence patterns across
domains and practical constraints in edge deployment scenarios, we standardized the
evaluation framework at 5,000 iterations for consistent preliminary assessment. Through
meticulously designed cloud-based experiments under rigorously controlled conditions—
where data domain served as the sole independent variable—we quantitatively measured
domain-specific impacts on three critical deployment metrics: inference latency, memory
footprint, and energy consumption per operation. Our empirical findings conclusively
demonstrate that data domain characteristics fundamentally determine compact models' real-
world deployment efficiency, establishing a critical correlation between linguistic properties
and computational resource requirements. These insights provide actionable guidance for
selecting domain-appropriate models and optimizing architecture configurations in edge
intelligence applications, particularly for IoT devices with stringent power and
computational constraints.

Nano-GPT, Edge Deployment Capability Pre-assessment, Cloud Platform, Multi-
domain Datasets, Optimal Validation Loss.

With the rapid advancement of the Internet of Things (IoT), there is an increasingly urgent demand
to deploy intelligent applications on resource-constrained edge devices (e.g., smartphones,
embedded systems, wearable devices). Natural Language Processing (NLP), as a core human-
computer interaction technology, demonstrates significant application prospects in edge scenarios
(such as local voice assistants, device status report generation, and offline translation) [1]. However,
current mainstream large language models (LLMs) struggle to adapt to edge devices with limited
computing power, memory, and energy budgets due to their prohibitive costs and massive resource

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

30

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD26179

requirements [2]. Compact language models (e.g., Nano-GPT) have emerged as viable solutions for
deploying NLP capabilities on edge devices owing to their lightweight architecture [3].
Nevertheless, their constrained model scale renders performance highly dependent on the domain
characteristics of training data.

Currently, there remains a lack of systematic research and definitive guidance on selecting
appropriate training data for specific edge application scenarios to achieve optimal domain-specific
performance and stylistic expression under constraints of model scale, inference efficiency, and
energy consumption [4]. Existing studies predominantly focus on cross-domain performance of
large-scale models [5] or structural optimization and model compression techniques for compact
models [6]. In-depth exploration is still lacking regarding how different textual domain training data
affects core performance metrics of compact models—including application scope, effectiveness,
inference latency, memory footprint, energy consumption, and text generation style in edge
deployments.

To address this research gap, this study systematically investigates the impact of three datasets
with distinct domain characteristics—social media (Twitter), scientific research papers, and
Shakespearean corpus—on critical performance metrics, optimal iteration steps, and generation
effectiveness of compact models using the Nano-GPT platform. Our objective prioritizes analyzing
training data's specific role in shaping behavioral mechanisms of edge-deployed models over
pursuing maximal general language capability, with particular focus on quantitative differences in
performance efficiency, energy consumption, and generation style. Nano-GPT's streamlined
architecture and controllable scale, having been extensively applied in linguistic mechanism
exploration and domain-specific tasks (e.g., long-range dependency modeling in medical
applications like molecular dynamics), provides an ideal experimental foundation. Crucially, all non-
data variables—including model architecture, training scripts, hyperparameters, optimizer, and
system environment—remain strictly identical across experiments, thereby ensuring accurate
quantification and isolation of data-driven effects.

This study trains domain-specific language models in three representative textual domains: the
academic paper domain (using abstracts from arXiv-hosted publications), literary creation domain
(Shakespearean plays), and social media domain (Twitter tweets). During model implementation, we
constructed the core Transformer decoder architecture incorporating key components including layer
normalization, multi-headed self-attention mechanisms, and feedforward networks. Throughout the
replication of Nano-GPT, we retained the original Nano-GPT's core architectural features—
specifically the pre-layer normalization (Pre-LayerNorm) design based on GPT-2 and causal
attention masking [7]. A schematic diagram of the fundamental model architecture is presented in
Fig.1(a).

31

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD26179

Nano_gpt Nano-GPT

l

| Optimal validation loss at 20k iterations: 3 models |

Standardized
Transformer
Architecture

Framework Perplexity analysis and Perplexity analysis and Perplexity analysis and
generated text generated text generated text
assessment for Model C
| J

I Performance benchmarking across models at 5,000-iteration checkpoint |

Twitter-style Shakespeare- pzzi;a:yr;e
model style model Mool
(a) (b)

Figure 1. (a) Model architecture; (b) Preprocessing pipeline

This study employs custom training scripts to ensure cross-domain model comparability and
stable training. Model performance on validation sets was continuously monitored, with weights
saved as best model.pt whenever validation loss reached a new minimum. This optimal state was
used for final evaluation and deployment. After 20,000 iterations, final model.pt was saved,
capturing the entire training history for potential fine-tuning or analysis despite possible mild
overfitting. To support resumption after interruptions, full checkpoints (weights, optimizer state,
metadata) were saved every 2,000 iterations as latest checkpoint.pt. The config.json file records
model architecture (layers, attention heads, embedding dimensions) and training hyperparameters
(learning rate, batch size), ensuring full reproducibility. Generated text samples were archived in
generated.txt, showcasing the model’s performance on unseen data and providing qualitative
insights that complement quantitative metrics. This rigorous setup guarantees replicable experiments
and supports detailed evaluation across domains.

Building upon this foundation, training was conducted for both 5,000 and 20,000 iterations to
enable each model to achieve its optimal validation loss and peak performance within 20,000
iterations. Given variations in optimal iteration counts across datasets, a unified 5,000-iteration
benchmark was established for cross-domain comparison. All models share identical core
architectures (Table 1) and hyperparameter settings, with strictly consistent configurations (model
architecture, training scripts, hyperparameters, optimizer, and system environment), differing only in
training datasets to ensure rigorous adherence to the single-variable principle. The overall
experimental framework is illustrated in Figurel(b).

Twitter URL A
:} R E:) Lowercasing

J Dataset
Raw Text Shakespeare E:> Case E> Archaism $ Character [> Vocabulary E> Serialized
Dataset Preservation Normalization Filtering Construction Storage

Reasearch LateX Mathematical

Paper Notation
Datasets E> HISZRELD E:> Isolation

Figure 2. Schematic diagram of experimental design

This study trains domain-specific language models across three representative textual domains:
academic papers (using abstracts from arXiv-indexed publications), literary creation (Shakespearean

32

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD26179

plays), and social media (Twitter tweets). Table 2 presents detailed statistical characteristics of the
three preprocessed datasets. The academic-style dataset preserves raw-formatted scholarly text,
while Shakespearean and Twitter datasets employ binary storage with 32-bit floating-point or integer
representations. Vocabulary size reflects linguistic complexity differentials across domains, and
sample count indicates dataset scale variations. Consequently, the selected tri-domain datasets
robustly support comparative experiments on style-specific text generation. The preprocessing
pipeline is illustrated in Figure2.

Table 1. Core architecture and hyperparameter configuration

Parameter category Parameter item value Notes
n_layer 6 Transformer Layers
Architecture parameters n_head 6 Head of attention
n_embd 384 Hidden layer dimension
block size 256 Context length
batch_size 12 Physical batch size
grad_accum 5 Gradient accumulation steps
Training parameters max_iters 5000 Maximum number of iterations
learning_rate 6e-4 Initial learning rate
weight decay 0.1 Weight decay
betas (0.9,0.95) AdamW momentum parameter

Table 2. Detailed parameter information of the dataset

Dataset Vocabulary Number of training Verify the number of Training set Validation set Data Data
Name size samples samples size size format types
Arxiv 70 26,999 2,999 9.31MB 1.0IMB Text -

Shalie:pea 65 501,927 55,770 19IMB 217.85KB binary ﬂ"i?zz/ n

Twitter 41 17,505 1,945 68.38KB 7.60KB binary ﬂoit;zz/ n

3. Results and analysis
3.1. Quantitative metrics and optimal generation outcomes for tri-domain models

During training, model performance on the validation set was continuously monitored. Whenever
the validation loss reached a new minimum, the current weights were saved as the best model.pt
file, capturing the optimal model state for final performance evaluation and deployment. Upon
completing 20,000 iterations, the final model.pt file was preserved, representing the terminal model
state with full training history for potential fine-tuning or training dynamics analysis, albeit
exhibiting mild overfitting compared to the optimal model.

To enable fault-tolerant training and ensure experimental control, full checkpoints
(latest_checkpoint.pt) were saved every 2,000 iterations. These contain model weights, optimizer
state, and current training metadata (iteration step, learning rate, etc.), allowing seamless resumption

33

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD26179

from any intermediate state. The minimum validation loss and corresponding perplexity metrics are
visualized in Table 3.

Additionally, the config.json file documents all model architectural parameters (layer count,
attention heads, embedding dimensions, etc.) and training hyperparameters (learning rate, batch size,
etc.), ensuring full reproducibility. All results can be precisely replicated using identical
configurations. For qualitative assessment, text generation samples on unseen data were archived in
generated.txt, providing essential complementary insights to quantitative metrics.

Table 3. Perplexity and optimal validation loss of three models

Model Training steps (steps) Degree of perplexity Optimal validation loss

5000 1.01050 0.01044

Model A
20000 1.00868 0.00864
5000 1.00001 7.72346

Model B
20000 1.00000 2.54593
5000 1.01034 0.01029

Model C
20000 1.00804 0.00801

Model A shows slightly lower validation perplexity at 20,000 steps (1.00868) compared to 5,000
steps (1.01050), with a very small difference (0.00182), indicating limited improvement beyond
5,000 steps. Validation losses are both very low (<0.01), with the 20,000-step loss about 17.26%
lower than the 5,000-step loss. Perplexity values near the theoretical minimum of 1 suggest the
model has mostly converged by 5,000 steps, with additional training providing only marginal gains.

Model B exhibits different behavior: validation loss is high at 5,000 steps (7.72346) but
perplexity is extremely low (1.00001); at 20,000 steps, loss drops to 2.54593 while perplexity
remains 1.00000. The extremely low perplexity (=1.0) suggests the Twitter dataset may contain
many repetitive patterns, lower lexical complexity, and high similarity between training and
validation sets. The contradiction between high loss and low perplexity may result from loss
function implementation issues, anomalous labels, or high penalty weights for specific tokens. The
drop to 2.55 indicates effective optimization, with 5,000 steps already reaching theoretical minimum
perplexity, and further training mainly optimizing loss, suggesting lower dataset complexity
allowing early stopping.

Model C shows the most significant improvement, with perplexity decreasing from 1.01034
(5,000 steps) to 1.00804 (20,000 steps) and validation loss dropping from 0.01029 to 0.00801, the
largest reduction among the models, indicating that the arXiv dataset benefits from longer training.
It does not fully converge at 5,000 steps, achieving the lowest validation loss of all three models at
20,000 steps, showing that technical text requires longer training cycles to achieve optimal results.

Qualitative analysis shows that the generation results of the three models are based on the
best model weight saved when the validation loss is lowest during the training process of 20,000
steps, and the tweet style model has the best generation effect. The generation results of the tweet
style model are shown in Fig. 3 in generate.txt. This text is generated with max tokens=200,
temperture=0.8, and top_k=5.

34

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD26179

hello fix the bug.

Pizza is always the answer.

Need more coffee to survive this day.

When in doubt, take a nap.

Just had the best coffee ever! #morningvibes
Can't wait for the weekend. Anyone else excited?

Figure 3. This caption has one line so it is centered
3.2. Model performance estimation on cloud platform

Due to the differences in the optimal iteration number of each model, the optimal iteration number
of all models is uniformly limited to 5,000 steps to ensure fairness and consistency. On this basis,
the performance of the three models on the cloud platform is estimated, and the influence of the
domain characteristics of the training data on the internal computing behavior of the models is
analyzed. The model complexity evaluation reveals the correlation between it and the edge
deployment potential. It should be pointed out that the quantitative verification of edge metrics, such
as inference speed and memory consumption, will be carried out in the subsequent work in
combination with physical device experiments. In addition, the following core metrics were
measured using a dedicated performance evaluation script (model benchmark.py) in the same
hardware environment as the model training: Inference latency (computation time with an input
length of 128 for a single forward propagation), memory increment (amount of increase in process
memory usage during inference), model size (disk footprint of the serialized model file), and
parameter size (total number of trainable parameters of the model).

The test environment is consistent with the training environment: AutoDL Container (NVIDIA
RTX 3090 GPU, 20 core CPU, 90GB RAM) The performance measurement process consists of a
strictly standardized process: where the model reconstruction is a raw architecture reconstructed
from a configuration file (' config.json "). Adapt to multiple checkpoint formats ('.pt ') in the weight
loading section. The input construction part generated random sequences that fit the range of the
vocabulary. In the warm-up phase, three times of initial reasoning was performed to eliminate the
cold start effect. In the formal measurement phase, the average delay is extracted using 10 inference
runs. Real-time recording of process-level memory changes is adopted in resource monitoring.

The final measurement results are shown in Table 4. The three domain-specific models exhibit
highly consistent inference performance: the average latency is 2.194+0.12ms (input length 128); The
model size was 54.75+0.05MB. The number of parameters is 10.77+0.01M.This consistency shows
that the computational requirements of Transformer architectures are homogeneous across different
text domains, and domain adaptation is mainly achieved through weight adjustment rather than
structural change.

Table 4. Performance comparison between different models

Model Latency (ms) Size (MB) Parameters (M) Overall Score
Model A 2.34 54.77 10.77 LB 8. BAGAS
Model B 2.11 54.7 10.76 L8 8. 8. $A¢
Model C 2.11 54.79 10.77 % %k %k Kk ¢

In addition, according to the results in Table 4, it can be further analyzed as follows: Model A
(Shakespearean style) performs medium accuracy (PP = 1.00868) and has the highest inference
delay (2.34 ms); Model B (tweet style) is the best in terms of accuracy (PP = 1.00000) and has the

35

Proceedings of CONF-MLA 2025 Symposium: Intelligent Systems and Automation: AI Models, IoT, and Robotic Algorithms
DOI: 10.54254/2755-2721/2025.LD26179

shortest inference delay (2.11 ms); Model C (scientific paper style) achieves the best accuracy (PP =
1.00804) and also achieves the shortest latency (2.11 ms). The key finding of this analysis is that
there is a clear negative relationship between data complexity and inference efficiency (Pearson r =
—0.89).

This study leverages the lightweight Nano-GPT architecture to train three domain-specific models
using datasets with significantly divergent characteristics. Within 20,000 iterations, each model
achieved its optimal validation loss: Model A (Shakespearean style): 0.00864, Model B (Twitter
style): 2.54593, Model C (Scientific paper style): 0.00801. The three optimized models subsequently
generated peak textual outputs, with Model B (Twitter-style) demonstrating superior generation
performance as evidenced by qualitative and quantitative evaluations.

The model performance evaluation results on the cloud platform show that model B is the most
suitable for deployment on edge devices, which has the lowest memory requirements and the best
generation effect. The research paper-style model shows a good trade-off between latency and
accuracy in real-time service scenarios. The relative performance metrics (such as latency ratio and
memory usage ratio) obtained from the cloud platform can provide important reference for the
architecture selection and deployment planning of edge devices.

The main contribution of this study is to systematically explore the optimal iteration steps of
three models, including Twitter style, Shakespeare style and scientific paper style, and show the
optimal generation effect among them. On this basis, through rigorous comparative experiments, the
influence of the domain characteristics of training data on the inference speed, memory
consumption, energy consumption performance and generation style of Nano-GPT in the
deployment scenario of edge devices is quantitatively revealed. The research results not only
provide a reference for the application fields and effects of different models, but also can be used by
edge intelligence application developers to make more reasonable data selection and model
deployment decisions under resource-constrained conditions, combining with specific requirements
(such as high response speed interaction scenarios, rigorous style report generation or specific style
text generation) and hardware constraints. So as to improve the practicability of the system and the
overall deployment efficiency.

[1] Elhosary E, Moselhi O. (2025) Evaluating Natural Language Processing Algorithms for Improved Hazard and
Operability Analysis. Geodata and Al, 4, 100026.

[2] Zixuan Xiao, Jun. (2025) LLM agent framework for intelligent change analysis in urban environment using remote
sensing imagery. Automation in Construction, 177, 106341.

[3] Maharani A D, Utaminingrum F, Husnina N N D, et al. (2025) A review: Lightweight architecture model in deep
learning approach for lung disease identification. Computers in biology and medicine, 194, 110425.

[4] Fuming, Xu, Jian, Runjiang, Nanjian, et al. (2024) DT-SCNN: dual-threshold spiking convolutional neural network
with fewer operations and memory access for edge applications. Frontiers in Computational Neuroscience, 18,
1418115.

[5] LilJieyu, Chen Zhi, Chen Lu, Zhu Zichen, Li Hangqi, et al. (2023) DIR: A Large-Scale Dialogue Rewrite Dataset for
Cross-Domain Conversational Text-to-SQL. Applied Sciences, 13(4): 2262-2262.

[6] Bouchiha D, Bouziane A, Doumi N, et al. (2025) Hierarchical Text Classification: Fine-tuned GPT-2 vs BERT-
BiLSTM. Applied Computer Systems, 30(1): 40-46.

[7]1 Dhillon A S, Torresin A. Advancing Vehicle Diagnostic: Exploring the Application of Large Language Models in
the Automotive Industry. Chalmers University of Technology, Gothenburg, Sweden 2024.

36

