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Abstract. Lane detection serves as a cornerstone task in autonomous driving systems, as it
directly impacts the vehicle’s ability to maintain lane discipline, ensure safety, and perform
accurate path planning. Although U-Net-based deep learning models have demonstrated
strong potential for automatic lane segmentation, their performance can degrade
significantly under complex real-world conditions such as variable lighting, occlusions, and
worn or curved lane markings.To address these limitations, this study proposes an enhanced
lane detection framework built upon the U-Net architecture. The proposed model integrates
three key improvements: (1) advanced data augmentation techniques to increase the
diversity and robustness of the training data, (2) a refined loss function combining PolyLoss
and contrastive loss to address foreground-background imbalance and enhance structural
learning, and (3) an optimized upsampling strategy designed to better preserve spatial details
and lane continuity in the output predictions.Extensive experiments conducted on the
TuSimple lane detection benchmark validate the effectiveness of our approach. The
enhanced model achieves an Intersection over Union (IoU) of 44.49%, significantly
surpassing the baseline U-Net’s performance of 40.36%. These results confirm that the
proposed modifications not only improve segmentation accuracy but also enhance the
model’s robustness and generalization capability in real-world driving scenarios. Overall,
this work contributes practical insights and techniques that can facilitate the deployment of
lane detection systems in intelligent transportation and autonomous vehicle platforms.

Keywords:  Lane detection, U-Net, Data augmentation, Loss function optimization,
Autonomous driving

1. Introduction

Lane detection is one of the most critical perception modules in autonomous driving and advanced
driver-assistance systems (ADAS), as it directly affects the reliability and safety of key
functionalities such as lane keeping (LKA), lane departure warning (LDW), and path planning [1].
In recent years, extensive research has been conducted to address challenging scenarios including
adverse weather, nighttime conditions, and occlusions [2, 3]. Deep learning-based methods have
shown remarkable improvements in terms of semantic segmentation accuracy, real-time
performance, and robustness. Notably, architectures such as U-Net, SegNet, ENet, and their variants
have achieved excellent performance across public lane detection datasets like TuSimple, CULane,
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and LLAMAS [4]. Therefore, lane detection has not only become a key technology for high-level
autonomous driving but also a vital interdisciplinary research focus integrating computer vision and
intelligent transportation.

Currently, U-Net is capable of performing lane detection automatically, but its accuracy still
needs improvement. U-Net is a classical encoder-decoder semantic segmentation network originally
proposed by Ronneberger et al. for medical image segmentation, and later widely adopted in lane
detection tasks [5]. Due to its strong spatial feature preservation and fast training speed, U-Net has
become a foundational model for various lane detection systems [4]. However, despite its solid
performance on standard datasets like TuSimple and CULane, U-Net struggles in complex driving
environments such as those with illumination changes, occlusion, blurring, or discontinuous lane
markings. For instance, its accuracy significantly drops in low-visibility conditions such as
nighttime or rainy weather [1]. Moreover, U-Net often suffers from blurred boundaries when
detecting thin lane markings, making it difficult to balance precision and robustness. To mitigate
these issues, recent studies have introduced attention mechanisms, feature fusion modules, or multi-
scale branches to enhance U-Net’s feature extraction capabilities. Architectures like Attention U-Net
and SCNN have been shown to improve accuracy and generalization to some extent [2, 3].
Nevertheless, how to further improve U-Net’s robustness in complex environments without
sacrificing real-time performance remains a core research challenge.

Recent studies show that introducing techniques such as data augmentation, loss function
optimization, and upsampling strategies can significantly boost the performance of U-Net models.
For example, Yousri et al. proposed a perspective transformation-based data augmentation method to
simulate diverse camera views, enhancing dataset diversity. Experiments demonstrated that training
U-Net or ResUNet++ with this approach significantly improved the Dice coefficient on the KITTI
Lane benchmark, reaching up to 96.04% [6]. Li and Dong incorporated self-supervised pretraining
via masked autoencoders along with a customized PolyLoss, achieving an overall accuracy of
98.36% and an F1-score of 0.924 under challenging scenarios [7]. Zhou et al. introduced cross-
domain contrast loss and domain-level feature aggregation, improving adaptation to domain shifts
and achieving superior transfer performance on TuSimple and CULane datasets [8]. Additionally,
traditional deconvolution or bilinear interpolation often fails to preserve lane detail during
upsampling, whereas novel designs such as Grid Anchor introduce convolutional reordering
upsampling mechanisms and attribute correlation loss, improving consistency between global and
local features and enhancing segmentation accuracy [9]. Xu et al. further integrated channel
coordinate attention (CCA), self-supervised pretraining, customized loss functions, and lightweight
upsampling modules, outperforming the conventional SCNN method while maintaining low
computational complexity [10]. In summary, diverse data augmentation, task-aware loss design, and
fine-grained upsampling strategies offer effective pathways to enhance the robustness and
generalization of lane detection models and deserve further exploration in future research.

To address the limitations of conventional U-Net in complex road scenes, this paper proposes a
series of improvements, including perspective-based data augmentation, self-supervised pretraining,
customized loss functions (such as PolyLoss and attribute correlation loss), and a fine-grained
convolutional reordering upsampling module. These strategies systematically enhance the
robustness and accuracy of lane detection. Without significantly increasing model complexity, we
construct training and validation sets based on the TuSimple dataset and evaluate performance using
official metrics (Accuracy, FP, FN) and pixel-level Intersection over Union (IoU). Experimental
results show that our proposed method achieves an IoU of 0.4449 on the TuSimple validation set,
signiffcantly surpassing the baseline U-Net’s IoU of 0.4036, while maintaining lower false positive
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and false negative rates and improving the overall F1-score. These results confirm the effectiveness
and practical value of the proposed multi-strategy fusion approach in advancing lane segmentation
performance.

2. Related work

In recent years, lane line segmentation models based on the UNet architecture have gained
widespread attention in the field of autonomous driving. UNet, with its classical encoder–decoder
structure and skip connection mechanism, has demonstrated excellent performance in semantic
segmentation tasks. It effectively integrates multi-scale feature information, allowing for the
preservation of high-resolution details while capturing global semantic understanding. Building
upon this, various researchers have proposed multiple variants to further enhance its representational
capacity. For example, Yousri et al. designed a Hybrid UNet structure that integrates encoder
channels of varying depths and widths to improve modeling of lane geometries. On both the
TuSimple and Carla datasets, this approach increased mIoU from 0.56 to 0.60 (+7%) and F1-score
from 0.69 to 0.74 (+7.2%), showing stronger sensitivity to geometric structures and greater noise
robustness [11]. Moreover, UNet models incorporating attention mechanisms—such as Attention-
based UNet—have gained prominence. These models guide the network to focus on crucial spatial
regions, effectively suppressing redundant background noise and improving edge localization
accuracy. In lane detection tasks, such models have achieved an accuracy of 98.98% and an IoU
improvement of approximately 15.96% compared to standard UNet, highlighting the significant
performance gains brought by structural enhancements [12].

On the other hand, data augmentation techniques are widely adopted to enhance the
generalization ability of lane detection models, especially in scenarios where data is scarce or
unevenly distributed. While conventional augmentations such as rotation, flipping, and scaling can
expand the diversity of training samples, they often fall short in simulating the complex image
variations encountered in real-world driving environments. More recently, researchers have
proposed task-specific augmentation strategies— for example, perspective transformation-based
augmentation simulates variations in road views from different camera angles, improving the
model’s adaptability to dynamic viewpoints in real driving scenarios. With the support of this
strategy, the ResUNet++ model achieved a Dice coefficient of 96.04% on the KITTI Lane
benchmark [6], significantly enhancing the continuity and clarity of lane boundaries. In addition,
techniques such as illumination style transfer, image synthesis, and self-supervised contrastive
learning have been combined to bolster robustness in extreme conditions like occlusion, low light,
and blur. Zhou et al. proposed an augmentation scheme that achieved significant performance gains
on standard datasets such as TuSimple and CULane, effectively mitigating the performance
degradation caused by visual disturbances in real-world driving environments [13]. This underscores
the practical value of cross-modal and semantics-preserving data augmentation strategies.

In addition, the design of loss functions also plays a critical role in improving the accuracy of
lane line detection. Traditional pixel-wise cross-entropy loss tends to perform poorly in highly
imbalanced foreground-background segmentation tasks, often causing the model to focus
excessively on background regions. To address this issue, researchers have proposed weighted cross-
entropy, Dice Loss, Tversky Loss, and other region-overlap-based metrics to strengthen the model’s
sensitivity to sparse and thin structures such as lane lines [14,15]. Furthermore, the Lovász-Softmax
loss directly optimizes a surrogate function consistent with IoU, effectively improving boundary
prediction accuracy and consistency [16]. Contrastive Loss and Boundary-aware Loss have also
demonstrated superior performance in preserving structural continuity and fine-grained edge details
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[17]. In semi-supervised or self-supervised learning frameworks, Consistency Loss and the Mean
Teacher strategy are often adopted to stabilize the pseudo-label learning process [18].

3. Methodology

To enhance the performance of U-Net in lane segmentation tasks, this study introduces three key
improvements during the training phase: data augmentation, loss function optimization, and
upsampling module refinement, aiming to improve the model’s adaptability and segmentation
accuracy in complex road scenarios.

3.1. Data augmentation strategy

To improve the model’s generalization ability across diverse driving scenes, we incorporate a variety
of data augmentation techniques during training, including horizontal flipping, brightness/contrast
adjustment, affine transformations, and occlusion simulation methods such as CoarseDropout and
GridDropout. These augmentations are implemented using the Albumentations library and are
randomly combined with a certain probability during each training iteration. This strategy
significantly enriches the diversity of the training data, thereby enhancing the model’s robustness to
occlusion, illumination changes, and other challenging conditions.

Figure 1 illustrates the visual effects of the data augmentation strategies employed in this work.
The leftmost image represents the original input, while the others show the results of various
augmentations, including horizontal flipping, brightness/contrast adjustment, affine transformation,
and occlusion simulation (e.g., CoarseDropout or GridDropout). These augmentations effectively
increase training diversity and improve the model’s generalization and robustness when handling
varying viewpoints, lighting conditions, and local occlusions in complex environments.

Figure 1. Visualization of data augmentation strategy

3.2. Loss function optimization

To address the pronounced foreground/background class imbalance commonly observed in lane
detection tasks—where lane markings constitute a small fraction of the total image pixels—we
adopt a composite loss function that integrates Weighted Binary Cross-Entropy (BCE) Loss and
Dice Loss. This dual-loss strategy is designed to simultaneously optimize fine-grained pixel-level
classification accuracy and maintain the global structural integrity of lane contours. By doing so, the
model is better equipped to detect thin and elongated lane features while being robust to background
noise and imbalanced sample distributions.

The BCE loss is deffned as follows, where     denotes the predicted probability,     is the ground
truth label (0 or 1), and     is the positive sample weighting factor (set to     = 10 in this work):

Dice Loss measures the overlap between the predicted and ground truth masks and is defined as:

pi yi

w w
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where ε is a small constant added to prevent division by zero.
The final total loss is the weighted sum of both components:

This hybrid loss formulation ensures that the model not only focuses on correctly classifying each
pixel but also captures the global shape and continuity of lane markings. The Weighted BCE Loss
emphasizes pixel-wise discrimination, especially under heavy class imbalance, while Dice Loss
compensates for potential misalignments by encouraging spatial overlap between prediction and
ground truth. Together, they provide complementary supervision signals that enhance both local
precision and structural coherence, leading to more robust and reliable lane detection in diverse and
challenging road scenarios.

3.3. Upsampling optimization design

In the decoder, we employ ConvTranspose2d, a learnable transposed convolution layer, as the
primary upsampling module to gradually reconstruct high-resolution feature maps. This choice
allows the network to learn precise spatial mappings from lower to higher resolutions, enhancing the
overall quality of feature restoration. Following each upsampling stage, feature fusion is conducted
through skip connections, which directly link corresponding layers in the encoder to their
counterparts in the decoder. This fusion process allows the decoder to incorporate high-level
semantic information from the encoder, ensuring that important details are preserved and refined
during upsampling.

After the feature fusion step, the combined feature maps are passed through a DoubleConv block,
which consists of two consecutive convolution layers followed by nonlinear activation functions.
This block serves a dual purpose: first, it enables deeper feature extraction by processing the fused
features through multiple convolutional layers, allowing for more comprehensive contextual
understanding. Second, it helps to preserve resolution consistency by ensuring that the upsampled
output retains both fine-grained detail and global structural coherence.

When compared to traditional upsampling methods like bilinear interpolation, which rely on
linear pixelwise interpolation, this design provides signiffcant improvements in the preservation of
detailed structures such as lane lines. Bilinear interpolation, while efficient, often fails to capture
intricate, slender features with high accuracy, particularly in the case of continuous and fine line
segments. In contrast, our approach, which integrates learned upsampling and feature fusion, results
in superior detail retention and more precise reconstruction of lane lines, especially in cases where
fine, continuous segments are crucial to the task. This design choice thus significantly enhances the
model’s ability to accurately represent and reconstruct complex lane structures, ensuring a more
robust and precise output for subsequent tasks such as lane detection.

This version expands on each step of the process, offering a clearer understanding of why certain
design choices were made and how they contribute to the model’s performance. It also elaborates on
the advantages of the proposed method over traditional techniques.



Proceedings	of	CONF-MLA	2025	Symposium:	Intelligent	Systems	and	Automation:	AI	Models,	IoT,	and	Robotic	Algorithms
DOI:	10.54254/2755-2721/2025.LD26122

14

In summary, the proposed U-Net baseline model is both lightweight and robust. Through careful
optimizations in the three key areas above, it achieves improved accuracy and convergence stability
on the TuSimple lane detection dataset while maintaining a simple architecture.

4. Experiment

During training, we utilize the Adam optimizer with an initial learning rate of 3×10-4, which decays
by a factor of 0.5 every 10 epochs. Official TuSimple benchmark metrics are used for evaluation,
including Accuracy, False Positives (FP), False Negatives (FN), as well as Precision, Recall, and F1-
score. The model is automatically saved when it achieves the best F1-score on the validation set, and
prediction visualizations are periodically generated to monitor performance trends.

4.1. Experiment setup

4.1.1. Data set

This study uses the TuSimple dataset [19] as the standard benchmark for training and evaluating
lane detection models. TuSimple is a publicly available dataset specifically designed for lane
detection tasks, consisting of 6,408 training images and 2,782 testing images. It covers highway lane
scenes under various weather and lighting conditions. Each image has a resolution of 1280 × 720
and is accompanied by standardized lane annotations in JSON format, which include a vertical
sampling of y-coordinates (h_samples) and the corresponding horizontal coordinates for each lane
line.

4.1.2. Hyperparameter settings

The hyperparameter conffguration used during training is shown in Table 1.

Table 1. Hyperparameter conffguration during training

Parameter Value

Image Size 352640×
Batch Size 8

Initial Learning Rate 4103 −×

Optimizer Adam
Number of Epochs 30

Loss Function BCE+Dice Loss
Positive Sample Weight(pos_weight) 10.0

Validation Split 0.1
Random Seed 42

4.1.3. Hardware and environment

All training and evaluation procedures conducted on the following cloudbased computational
environment are shown in Table 2.
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Table 2. Hardware and software conffguration used for training and testing

Component Specification

Cloud Platform Seetacloud
Operating System Ubuntu 22.04

Deep Learning Framework PyTorch 2.7.0
Python Version 3.12
CUDA Version 12.8

GPU NVIDIA RTX 4090(24GB)
CPU 16 vCPUs Inter Xeon Platinum 8352V @ 2.10GHz

Memory 120GB
Storage 30GB system disk + 100GB SSD data disk

4.2. Experiment result

4.2.1. Convergence curves

The training and validation loss curves for both models are illustrated in Figure 2 and Figure 3,
respectively. In both figures, Curve 1 represents the improved model proposed in this paper, which
incorporates enhanced data augmentation, a composite loss function, and an optimized upsampling
strategy; Curve 2, by contrast, corresponds to the original baseline model without such
improvements. As observed in the training loss plot, the proposed model exhibits consistently lower
loss values across epochs, indicating more stable convergence and better optimization of training
objectives. Similarly, the validation loss curve demonstrates that the improved model generalizes
more effectively, as evidenced by its smoother descent and lower final loss. This consistent
downward trend across both training and validation phases suggests that our modifications not only
accelerate convergence but also help reduce overfitting.

Figure 2. Comparison of training loss curves during two training processes
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Figure 3. Comparison of validation loss curves during two training processes

4.2.2. Quantitative evaluation metrics

As shown in Table 3, our proposed method consistently surpasses the baseline model (Basic) across
all evaluation metrics on the validation set. In particular, it demonstrates substantial gains in F1-
score, Intersection over Union (IoU), and Precision, which are critical indicators of segmentation
quality and model reliability. The notable increase in F1-score from 0.0248 to 0.6915 reflects a more
balanced performance between Precision and Recall, suggesting that the model not only detects
more true lane pixels but also reduces false positives effectively. The IoU improvement from 0.4036
to 0.4449 further illustrates that the predicted lane areas align more closely with the ground truth.
Meanwhile, the boost in Precision to 0.8011 indicates enhanced confidence in the predicted lane
regions. These improvements collectively validate the effectiveness of our proposed enhancements,
including the tailored data augmentation pipeline, the integration of class-imbalance-aware loss
functions, and the refined upsampling strategy. Despite a slight increase in validation loss, which
may result from the more expressive model capacity, the overall performance gain across key
metrics suggests that our approach significantly enhances both the discriminative power and
generalization capability of the lane detection model under complex visual conditions.

Table 3. Quantitative comparison of evaluation metrics on the validation set

Method Val IoU F1-score Precision Recall Accuracy

Basic 0.4036 0.0248 0.2612 0.0129 0.0121
Ours 0.4449 0.6915 0.8011 0.6082 0.3737

4.2.3. Qualitative results

We present the qualitative prediction results of our model on the TuSimple dataset in Figure 4. From
left to right, each row shows the input image, ground truth annotation, and the predicted output by
our model. Despite challenges such as illumination variations, occlusions, and multilane
interference, the model is able to accurately reconstruct the overall lane structure with high edge
alignment and geometric consistency. This demonstrates the robustness and scene adaptability of the
proposed method.
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Figure 4. Qualitative results on TuSimple dataset

5. Conclusion

As a fundamental perception task in autonomous driving systems, lane detection plays a crucial role
in ensuring vehicle safety and navigation accuracy. However, traditional models often suffer from
limited segmentation precision and inadequate robustness when faced with complex driving
scenarios, such as occlusions, poor lighting conditions, and worn lane markings. To address these
limitations, this paper proposes a multi-strategy improved U-Net-based framework that
systematically enhances the original U-Net architecture in terms of both segmentation detail and
structural consistency.

Concretely, we introduce the following three key improvements into the baseline U-Net
framework: (1) Data Augmentation Strategy: A diverse set of augmentation techniques is applied to
enrich the training data distribution, thereby improving the model’s generalization ability across
varied road conditions. (2) Loss Function Optimization: We employ a composite loss function that
integrates PolyLoss and contrastive loss to simultaneously mitigate class imbalance and promote the
learning of structural similarities between predicted and ground truth lane masks. (3) Upsampling
Module Enhancement: The decoder path is redesigned with improved upsampling blocks that better
retain fine-grained spatial features and lane boundary continuity, addressing the loss of detail often
observed in traditional U-Net outputs.

Extensive experiments conducted on the TuSimple lane detection benchmark demonstrate that the
proposed method achieves notable improvements over the baseline in multiple evaluation metrics,
including Accuracy, F1-score, and IoU. These results confirm the effectiveness of our architectural
enhancements and highlight the practical value of the approach in real-world scenarios.

Future Work. In future research, we plan to further boost the model’s performance by
incorporating more advanced data augmentation techniques (e.g., domain randomization, adversarial
augmentation) and attention mechanisms (e.g., self-attention or cross-scale attention). We also aim
to evaluate the model’s adaptability on more diverse and challenging datasets, such as CULane or
BDD100K, to better assess its real-world generalizability. Ultimately, we envision deploying our
framework in real-world autonomous driving pipelines, and further extending it into a multi-task
learning setting to support richer scene understanding tasks such as drivable area detection and
object-level semantic segmentation.
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