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This study proposes the integration of BiFPN feature pyramid and CBAM
attention module in YOLOVS to enhance the robustness of traffic sign and signal detection,
based on the urgent need for urban road safety and autonomous driving. The experiment was
validated on a test set of 801 images and 944 targets, and the overall precision of the model
reached 0.739, Recall 0.654, mAP50 0.723, mAP50-95 0.631, Significantly better than
the baseline, with improvements of 5.2%, 1%, 2.8%, and 2.15% respectively, confirming
that the improvement strategy effectively reduces false positives and improves localization
classification consistency. The subdivision results show that the Stop logo achieves almost
zero missed detections due to its high contrast and regular shape, with Precision and mAP50
both approaching 1; The mAP50 of the three speed limits of 20, 60, and 70 km/h all
exceeded 0.82 under sufficient sample conditions, and remained above 0.75 on the stricter
mAP50-95 index, indicating good generalization to scale and lighting changes; Although
data is scarce for speed limits of 100 and 120 km/h, mAP50 still reaches 0.77 and 0.85,
indicating that the network has fully learned the common features of circular speed limit
signs; In contrast, signal lights such as Red Light have a small scale and complex
background, with mAP50-95 less than 0.35 and low recall, making them a key focus for
future optimization. Overall, the current model has matured for high contrast and regular
shape signs. The next step should be to focus on improving the recall rate of small sample
categories and traffic lights through difficult case mining, multi-scale training, and targeted
data augmentation. The gap between mAP50 and mAP50-95 should be narrowed at higher
IoU thresholds to meet the high reliability requirements of real road scenes. This study not
only validates the effectiveness of BIFPN+CBAM in traffic sign detection, but also provides
a reference for improving low sample category and small object detection, which has
positive significance for promoting the safe implementation of intelligent transportation
systems and autonomous driving.

YOLOvS, BiFPN feature pyramid, CBAM attention module, traffic sign
detection.

As a key component of intelligent transportation systems (ITS) and autonomous driving technology,
the research background of traffic sign detection stems from the urgent need for road safety and
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traffic efficiency. Traffic signs provide crucial road rules, danger warnings, and navigation
information for drivers or vehicles, and accurate and real-time recognition has a decisive impact on
driving decisions. However, the actual road environment is complex and ever-changing, with factors
such as changes in lighting, weather interference, occlusion, distorted viewing angles, and aging or
contamination of the signs themselves, making traditional detection methods based on manually
designed features less robust, and the recognition accuracy and processing speed difficult to meet
the requirements of practical applications [2]. With the rise of deep learning, especially
convolutional neural networks (CNN), object detection technology has made revolutionary
breakthroughs, providing powerful tools for traffic sign detection in complex scenes and promoting
the rapid development of research in this field [3].

In this context, the YOLO series algorithm, with its unique "end-to-end" single-stage detection
paradigm, has demonstrated tremendous value in traffic sign detection [4]. Compared with
traditional two-stage detectors, YOLO regards object detection as a single regression problem and
directly predicts bounding box and category probabilities on the entire image, greatly improving
processing speed and meeting the strict real-time requirements of traffic scenes. From YOLOvVI to
YOLOvV7, the algorithm continues to evolve: by introducing more efficient backbone networks,
multi-scale feature fusion, more advanced loss functions, and anchor box optimization strategies, the
detection accuracy is significantly improved while maintaining high-speed inference, especially for
the recognition ability of small-sized and dense targets. As the latest milestone in this series,
YOLOvS further strengthens its advantages in traffic sign detection [5]. It adopts an innovative
anchor free detection mechanism, simplifies model design, and improves generalization; Its
improved backbone network and feature pyramid structure achieve deeper and richer feature
extraction; The carefully designed loss function optimized the classification and localization tasks
[6]. YOLOvVS not only continues the high-speed characteristics of the series, but also reaches new
heights in detection accuracy, especially adept at dealing with small targets and fine classification
problems in complex environments, significantly improving the overall performance, robustness,
and practicality of traffic sign detection systems, laying a solid foundation for achieving safer and
smarter road perception. This article uses the BiFPN feature pyramid structure and CBAM attention
mechanism to improve and optimize the YOLOv8 model for traffic sign detection.

This article uses a private dataset for experiments, which collected 3581 images of road traffic signs,
including speed limit signs ranging from 20 to 120 and stop signs for traffic lights. The dataset can
be used to train YOLO models for detection and classification tasks. Select three images for display,
as shown in Figure 1.
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Figure 1. Partial dataset images
2.1. BiFPN

The core principle of BiFPN (Weighted Bidirectional Feature Pyramid Network) is to construct an
efficient and adaptive multi-scale feature fusion structure, aiming to overcome the efficiency and
effectiveness shortcomings of traditional feature pyramid networks in fusing features of different
resolutions. The network structure of BiFPN is shown in Figure 2. It first simplifies and optimizes
the structure of PANet, removing single input nodes that contribute less to the final output and
retaining only key nodes with multiple inputs, significantly simplifying the network. More
importantly, BiFPN introduces additional skip connections (shortcuts) between input and output
nodes of the same scale while retaining the top-down and bottom-up bidirectional paths of PANet,
forming a more powerful bidirectional information flow network. This design allows for repeated
and rapid fusion and extraction of feature information across multiple scales. Low level high-
resolution detail information and high-level strong semantic information can interact cyclically in a
bidirectional path, greatly enhancing the network's ability to capture cross scale contextual
information and providing richer and more robust multi-scale feature representations for subsequent
detection or segmentation tasks [7].
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Figure 2. The network structure of BiFPN

Another core innovation of BiFPN is the introduction of a learnable feature weight mechanism,
which solves the problem of ignoring the importance of different input features in traditional feature
pyramid simple averaging or concatenation fusion. At each feature fusion node of BiFPN, it does not
treat all input feature maps equally [8]. On the contrary, it assigns a learnable weight parameter to
each input feature map involved in fusion. This enables the network to dynamically and adaptively
adjust the contribution proportion of different resolution and semantic level features in the final
fusion result based on the actual needs of the target task.

2.2. CBAM

CBAM (Convolutional Block Attention Module) is a lightweight attention mechanism module used
to enhance the feature representation ability of convolutional neural networks. The network structure
of CBAM is shown in Figure 3, and its core idea is to infer attention maps along two independent
dimensions of channel and space, and multiply these attention maps with the original input feature
maps to achieve adaptive feature optimization. Specificallyy, CBAM consists of two serial
submodules: channel attention module and spatial attention module. The channel attention module
focuses on 'what features are more meaningful'. It first performs global average pooling and global
maximum pooling operations on the input feature map simultaneously, obtaining two different
channel descriptors (1D vectors). These two descriptors are respectively fed into a shared multi-
layer perceptron (MLP), with the first layer having C/r neurons and the second layer recovering to C
neurons. Add the two feature vectors output by MLP element by element and use the Sigmoid
activation function to generate the final channel attention weight map (1D). This weight map reflects
the importance of each channel and is multiplied with the original feature map channel by channel to
complete feature recalibration in the channel dimension [9].
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Fig. 1: The overview of CBAM. The module has two sequential sub-modules:
channel and spatial. The intermediate feature map is adaptively refined through
our module (CBAM) at every convolutional block of deep networks.

Figure 3. The network structure of CBAM

Subsequently, the feature map optimized by channel attention is fed into the spatial attention
module, which focuses on "which position of the feature map is more important". It also adopts dual
path convergence: average pooling and max pooling are performed simultaneously along the
channel axis to obtain two 2D feature maps. Combine these two feature maps in the channel
dimension to form a 2-channel feature map. Next, use a standard 7x7 convolutional layer to
convolve the concatenated feature map and compress it into a single channel. Finally, a spatial
attention weight map is generated using the Sigmoid function [10]. This weight map represents the
importance of each spatial position and is multiplied by the channel optimized feature map position
by position to achieve feature selection in the spatial dimension.

2.3. BiFPN-CBAM-YOLOvVS

The core principle of BiFPN and CBAM collaborative optimization of YOLOVS is to efficiently
fuse multi-scale features and adaptively enhance key information. The network structure of BiFPN-
CBAM-YOLOVS is shown in Figure 4. BiFPN improves the original feature pyramid network of
YOLOV8 by introducing cross scale skip connections, learnable feature weighted fusion, and
repetitive bidirectional information flow, significantly enhancing the efficiency of information
exchange and fusion quality between feature maps of different scales. It allows for multiple,
bidirectional interactive fusion of shallow high-resolution features and deep low resolution features,
and assigns learnable weights to different input features, enabling the network to integrate multi-
scale contextual information more flexibly and effectively, which is crucial for detecting objects of
different sizes.

After feature fusion or embedding CBAM modules at key positions in the backbone network,
further feature selection and refinement are carried out. CBAM sequentially applies channel
attention and spatial attention mechanisms: the channel attention module obtains channel
descriptions through global average pooling and max pooling, and then generates channel weights
through shared MLP and Sigmoid functions to highlight important feature channels; The spatial
attention module performs channel dimension average pooling and maximum pooling on the feature
maps optimized by channel attention, concatenates them, and generates spatial weight maps through
convolutional layers, focusing on key regions in the image. This mechanism enables YOLOVS to
adaptively suppress background noise or unimportant features, significantly enhancing the
expression of target related features.
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Figure 4. The network structure of BIFPN-CBAM-YOLOvVS

This experiment was conducted in the NVIDIA RTX 4090 (24GB video memory) hardware
environment, using Python 3.9, PyTorch 2.1.0, and Ultralytics YOLOvVS.1.0 frameworks as
software; The input image size is 640 x 640, the batch size is set to 16, the training epochs are 100,
the optimizer uses SGD, the initial learning rate is 0.01, and the cosine annealing strategy is
adopted.

Firstly, output the change curves of loss, precision, mAP50, and mAP50-95 during the training
process, as shown in Figure 5.
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Figure 5. The change curves of loss, precision, mAP50, and mAP50-95 during the training process

The prediction results of the output model on various traffic signs were evaluated using Precision,
Recall, mAP50, and mAP50-95 in this experiment. The results are shown in Table 1.
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Table 1. Results of model object detection

Class Images Instances P R mAP50 mAP50-95
all 801 944 0.739 0.654 0.723 0.631
Green Light 87 122 0.775 0.468 0.558 0.315
Red Light 74 108 0.758 0.495 0.577 0.346
Speed Limit 100 52 52 0.625 0.761 0.77 0.702
Speed Limit 110 17 17 0.565 0.459 0.453 0.418
Speed Limit 120 60 60 0.773 0.705 0.851 0.79
Speed Limit 20 56 56 0.885 0.881 0.939 0.805
Speed Limit 30 71 74 0.625 0.711 0.753 0.708
Speed Limit 40 53 55 0.652 0.857 0.832 0.734
Speed Limit 50 68 71 0.679 0.491 0.597 0.559
Speed Limit 60 76 76 0.865 0.713 0.829 0.748
Speed Limit 70 78 78 0.863 0.789 0.885 0.812
Speed Limit 80 56 56 0.615 0.747 0.688 0.615
Speed Limit 90 38 38 0.622 0.283 0.353 0.318
Stop 81 81 0.995 0.871 0.993 0.915

This experiment completed the target detection evaluation of traffic signs and signal lights on a
test set of 801 images and 944 instances. Overall, the model has an average accuracy of P=0.739, a
recall R=0.654, mAP50=0.723, and mAP50-95=0.631, indicating that it has robust localization and
classification capabilities when IoU > 0.5. There are significant differences in the performance of
segmented categories: the Stop category stands out alone, P=0.995. mAP50=0.993, Almost no
missed detections; The speed limits of 20, 60, and 70 km/h followed closely, with mAP50 exceeding
0.82 and mAP50-95 maintaining above 0.75, indicating high robustness under different scales and
lighting conditions; Although there are few samples with speed limits of 100 and 120 km/h, the
mAPS50 still reaches 0.77 and 0.85, indicating that the model has sufficient feature learning for
circular speed limit signs. Red Light's P, R, and F1 are slightly higher, overall slightly better; Both
mAP50-95 are less than 0.35, indicating an urgent need to improve the positioning accuracy for
small targets and complex backgrounds. Overall, the model is mature in recognizing high contrast
and regular shaped signs. The next step is to focus on improving the recall of small sample
categories and signal lights, as well as the accuracy under strict loU thresholds, through data
augmentation, difficult case mining, and multi-scale training. This will further narrow the gap
between mAP50 and mAP50-95 and meet the high reliability requirements of actual road scenes.

The comparison between the YOLOvV8 model before and after improvement is shown in Table 2.
The comparison of indicators before and after the improvement of the model is shown in Figure 6.

Table 2. Selected partial dataset

Model Images Instances P R mAP50 mAP50-95
YOLOVS 801 944 0.687 0.644 0.695 0.61
Our model 801 944 0.739 0.654 0.723 0.631
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From the results, it can be seen that this improvement has enabled YOLOvVS8 to comprehensively
surpass the baseline on a test set of 801 images and 944 instances: Precision has increased from
0.689 to 0.739, an increase of 5.2%, approaching the expected gap; Recall increased from 0.644 to
0.654, microliters 1%; MAPS50 increased by 2.8%, mAP50-95 increased by 2.15. Overall, while
significantly improving the positioning classification accuracy, the improvement also slightly
enhances the robustness under recall and strict IoU thresholds, verifying the effectiveness of the
introduced strategy in reducing false positives and improving overall detection quality.

Model Performance Comparison (P, R, mAP50, mAP50-95)
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Figure 6. The comparison of indicators before and after the improvement of the model
3. Conclusion

This article proposes an improved YOLOVS solution for intelligent transportation and autonomous
driving scenarios, which combines BiFPN feature pyramid and CBAM attention mechanism
optimization. The system evaluation was completed on a test set of 801 images and 944 instances.
The experimental results show that the model performs robustly under a loose threshold of IoU >
0.5: the overall average accuracy is P=0.739, recall R=0.654, mAP50=0.723, mAP50-95=0.631,
which are 5.2%, 1%, 2.8%, and 2.15% higher than the baseline, respectively, verifying the
effectiveness of the improved strategy in reducing false positives and enhancing localization
classification consistency. Fine grained analysis shows that the Stop class dominates with distinct
shape and color features (P=0.995, mAP50=0.993), and maintains mAP50>0.82 and mAP50-
95>0.75 for speed limits of 20, 60, and 70 km/h. This indicates that the model has a robust
understanding of circular speed limit signs across scales and lighting conditions; Although samples
are scarce at speeds of 100 and 120 km/h, mAP50 of 0.77 and 0.85 were still achieved,
demonstrating the generalization potential of feature extraction networks for small sample
categories. In contrast, although signal lights such as Red Light have a slight advantage in P, R, and
F1, the mAP50-95 is less than 0.35, exposing the shortcoming of insufficient positioning accuracy
for small targets in complex backgrounds. In summary, the recognition of traffic signs with high
contrast and regular shapes has become mature. The next step is to focus on improving the recall
rate of small sample categories and signal lights through data augmentation, difficult case mining,
and multi-scale training, and narrowing the gap between mAP50 and mAP50-95.

This study not only achieved comprehensive superiority of YOLOvV8 on a limited publicly
available test set using the combination of BiFPN+CBAM, but also provided a feasible model for
deploying lightweight models in resource constrained vehicle terminals with quantifiable

77



Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.26120

improvement amplitudes (P, R, mAP50, mAP50-95 synchronous upswing). Through structured
feature reuse and attention calibration, this paper significantly reduces the risk of false positives and
false negatives, laying a dual foundation of algorithm and data for the subsequent high reliability
traffic sign signal perception in all weather and all scene scenarios. It also contributes to practical
engineering experience for vehicle road cooperation and autonomous driving safety redundancy
design.
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