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Abstract: In the field of target detection, underwater target detection (UTD) still faces many
challenges. Although YOLO11 shows excellent real-time detection performance, its direct
application in UTD is not satisfactory because it has not been designed for complex
scenarios such as excessive object deformation and blurred lighting in underwater
environments, and is unable to fully extract and utilize the effective information in images,
resulting in low detection accuracy. To overcome this drawback, we developed a new
detection model SUD-YOLO (Stable Underwater Detection) based on YOLOv11 to improve
the detection accuracy and stability for underwater objects. Compared with YOLOv11,
SUD-YOLO provides SRFD (Shallow Robust Feature Downing-sampling) and DRFD
(Deep Robust Feature Downing-sampling) modules, which alleviate the problem of
important information loss during the deep propagation process due to sampling
(Upsampling and Downsampling) or multi-layer convolution by input feature scaling fusion.
At the same time, EfficientHead is adopted instead of the traditional mixed detection head to
ensure that the output features are not mutually dependent. Experimental results on the
URPC2020, Luderick and Deepfish datasets prove that SUD-YOLO has higher stability and
faster convergence during training, demonstrating excellent UTD performance. This
research proposes an efficient and reliable method for UTD tasks, providing technical
support for underwater exploration and marine resource investigation, and contributing to
the development of underwater intelligent detection.
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1. Introduction

For a long time, object detection has been one of the core issues in the field of computer vision, and
it is also a challenging research direction. The difficulty of this research lies mainly in that the
images of objects are often disturbed by various noise factors such as lighting, background, and
occlusion. At the same time, due to the inevitable jitter of camera and movement of object itself, the
final obtained images often become blurry and deformed, which will lead to misleading and low
usability. Therefore, the main goal of this task is to, through vision algorithm models, accurately
select the object regions and their categories of interested images or video frame sequences as much
as possible under the influence of various noise factors.
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Currently, the target detection models for images or videos are mainly divided into two
categories: single-stage and two-stage. The single-stage target detection algorithms mainly include
the YOLO series models suitable for real-time image processing. Compared with multi-stage
models, this type of model has higher efficiency in real-time monitoring tasks because it does not
need to pre-select candidate regions. Additionally, SSD model [1] can handle features of different
image scales. Although it is also a single-stage detection method like YOLO, this model can use
features of different depths for target detection task, thus having higher accuracy in detecting targets
of different sizes, especially small objects, compared to YOLO. In recent years, methods based on
attention mechanisms such as Vit [2] and Swin-Transformer [3] have gradually emerged. This
method, compared with the traditional CNN structure, enables these models to pay more attention to
important local or global features of images when processing high-resolution images, thereby
reducing computation and improving efficiency. Meanwhile, two-stage models such as Faster-
RCNN [4] and Mask-RCNN [5] have also received extensive research due to their high detection
performance. These models first generate candidate regions through selective search algorithms or
region proposal neural networks and then extract features on the candidate regions for further
detection. This method can effectively avoid bootstrap characteristics of single-stage models and
significantly reduce the false detection rate of the model.

The single-stage object detection box-based YOLO detection model has received extensive
attention and research due to its extremely fast detection speed. For instance, the YOLOV3 model
[6], compared to the previous two versions, increased the depth of the convolutional layers while
introducing residual modules, Batch Normalization layers [7], and LeakyReLU activation functions,
making the model have a high cost-performance ratio in terms of both detection speed and accuracy.
At the same time, to address the shortcomings of YOLOV1 [8] and YOLOV2 [9] in small target
detection, the FPN [10] structure was introduced, which fused multi-level features to improve the
detection performance of different-sized targets.

YOLOV5 improved the efficiency of feature extraction by introducing CSP, SPP, and PAN
structures in the backbone and neck networks while ensuring effective reduction of model
parameters. In subsequent developments, this series of models also continuously evolved in network
structure optimization, such as YOLOX [11] discarding previous prior box mechanism and adopting
the Anchor-free approach; YOLOV8, based on the SPP structure of YOLOV5, introduced the SPPF
structure, further optimizing the model parameters and improving the inference speed. At the same
time, both introduced the decoupled detection head method to separate the detection and
classification modules of the model, reducing mutual interference during gradient backpropagation.

In recent years, the YOLOv11 model was proposed based on the comprehensive improvements of
the previous YOLO series, such as replacing the C2F module of YOLOv8 in the backbone network
with the C3K2 module, which combines the flexibility of the C3K module and the efficiency of the
C2F module, reducing model parameters while increasing the adaptability of muti-scale features.
Additionally, after the traditional SPPF layer, the C2PSA structure was added, introducing the PSA
attention mechanism to enhance the feature extraction ability of the backbone network. In terms of
detection head improvement, YOLOv11 retained the depth separable convolution in YOLOv10 [12]
to replace the traditional convolution, reducing the number of parameters and improving the
detection efficiency. Overall, the improvements of YOLOv11 not only enhance the detection
accuracy and stability but also raise detection efficiency.

Although these models have demonstrated excellent application value in the field of object
detection and have shown good performance on specific datasets, there are still some challenging
problems in the field of object detection that need to be solved. For example, the images captured by
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cameras cannot fully reflect the actual deformation, size and texture differences of the target in the
real world, which makes the model less generalizable in real applications. Secondly, in video object
detection, there are often situations of motion blur or occlusion, which can make it difficult to locate
and identify the detected target, and even in environments where the distinction between the
background and the target is too low, the detection performance will significantly decline. Thirdly, if
the object to be detected has characteristics of scarcity, then there will be an imbalance problem in
the dataset. Similarly, overly dense detection objects can lead the model to learn redundant
information, all of which will affect the overall training effect of the model. Therefore, in order to
improve the detection performance of the model in complex environments, this research will adopt a
target detection model that integrates a feature sampling module and detection augmentation
methods to address the complex underwater fish target detection problem. The main work of this
study is as follows:

SRFD (Shallow Robust Feature Downing-sampling) and DRFD (Deep Robust Feature Downing-
sampling) feature sampling modules were introduced, which alleviated the problem that the shallow
backbone network often lost important information during feature extraction, and at the same time
ensured that the information flow could be stably propagated in the deep layers of network.

EfficientHead decoupled detection head structure was adopted to solve the interference of feature
information and improve the detection accuracy of the model.

Through experiments, SUD-YOLO was comprehensively evaluated on three underwater target
detection datasets. The model demonstrated excellent generalization performance.

2. Related work

Over the past decade, numerous studies have been devoted to the task of underwater target
detection. In 2015, Choi [13] first applied the GoogLeNet deep learning framework based on
convolutional neural networks to the fish detection and classification task of LifeCLEF. In the task,
he used the foreground selection search algorithm to select the target candidate regions and then
classified the regions through the neural network model. This method enabled the model to achieve
a fish count score and detection accuracy of over 0.9 and 0.8, respectively, in the video.

In 2016, Zhang et al. [14] adopted an unsupervised learning approach to automatically label fish
target samples in their research. This method solved the difficulty of manual annotation of
underwater fish datasets by integrating optical flow and selective search algorithms. After obtaining
a large number of candidate regions through this method, they also employed an improved NMS
method to reduce the model's misclassification rate, ultimately increasing the average precision (AP)
by approximately 20% compared to the un-fused model.

Li et al. [15] made lightweight improvements to Faster-RCNN, introducing mainstream methods
such as C.Relu architecture, residual connections, and batch normalization to accelerate the network
while enhancing performance. They achieved a MAP of 90% on the ImageCLEF fish dataset for
detection and multi-classification tasks and significantly improved the inference speed compared to
the original model.

In recent years, due to the inability of two-stage detection models to meet the requirements of
most real-time underwater detection tasks, single-stage methods with faster detection speeds, such
as the fish detection model based on YOLO, have been widely applied. For the improvement of
Yolov3, Abdullahz et al. [16] optimized the upsampling stride and added a spatial pyramid structure
on its basis, achieving an average accuracy of 75% on the Deepfish and Ozfish datasets. In
subsequent research, Long et al.  [17] introduced a triple attention module of coordinate attention,
channel attention, and spatial attention into the backbone network of the YOLOv5s architecture,
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demonstrating comparable MAP and superior inference speed to the larger YOLOv5L model on the
zebrafish dataset with a high density of target quantities.

In the past two years, improvements based on the YOLO series have become increasingly
common. Xu et al.  [18] proposed a residual enhancement module, a shared parameter detection
head, and a lightweight edge enhancement module for underwater object detection tasks to improve
the YOLOv8 model. The optimized model achieved MAP of 88.1% and 86.2% on the RUOD and
URPC2020 datasets, respectively, which significantly reducing the parameters of model while
maintaining improved detection accuracy. Guo et al. [19] also based their research on the YOLOv8
model to address the issues of small underwater targets and object deformation, mainly introducing
a transformable convolution structure to optimize the backbone network. This module enhanced the
model's recognition of spatial transformations and achieved the best results under high IOU
conditions on both the URPC2020 and COCO2017 datasets.

Based on the latest proposed YOLOv11 model structure, Liao et al. [20] made optimizations by
introducing the multi-scale expansion attention mechanism (MSDA) to improve the C2PSA module
in the original structure. They also introduced a learnable spatial feature fusion module for the
detection head, thereby enhancing the model's multi-scale information fusion capability. At the same
time, to address the problem of excessive difficult samples caused by class imbalance in the dataset,
a sliding weight loss function method was adopted to increase the learning weight of difficult
samples. This method demonstrated excellent generalization performance on DUO and RUOD. Luo
et al.  [21] recognized the importance of global and local context information for detection
performance in their experiments. They improved the model's detection efficiency by using various
methods, such as replacing the traditional convolutional upsampling method with the ADown
module, proposing C2PSA to replace the traditional C2PSF structure in feature fusion, introducing
depthwise separable convolution, point-wise affine transformation, and gating mechanisms, which
enhanced the ability of model to fuse global and local information and achieved a 1% to 2%
improvement in mAP compared to the baseline model on datasets UTDAC2020, DUO, and RUOD.

3. Methodology

3.1. Data preprocessing

In terms of the preprocessing of the dataset, this study first resized all the input images to 640*640
pixels. Then, the dataset was divided into training set and validation set. To verify the generalization
performance of the model, this experiment was conducted on three different classic underwater
datasets. Among them, the dataset Deepfish was divided into 14,148 and 2,645 images; URPC2020
was divided into 5,351 and 1,534 images; and Luderick was divided into 2,672 and 824 images.
Before substituting these datasets into the model for training, these images need to be scaled to
640*640 pixels and undergo certain probabilities of translation, rotation, cropping, mixing, and
mosaic enhancement. To increase the stability of model training, it is necessary to pre-cluster the
detection boxes to obtain the prior boxes of different scale targets as the benchmark for selecting the
target size during model training.

3.2. Improved network architecture

The structure of YOlOv11 [22] is the starting point for this improvement method. Compared with
the previous classic YOLOv5 and YOLOv8 structures, this structure introduces the C3k2 module.
Different with traditional Bottleneck, C3, and C2f modules, this module adopts dynamically
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adjustable convolution kernels, enabling the model to obtain multi-scale feature information in
complex detection tasks. For detection head, depth wise separable convolution structure replaces the
ordinary convolution, and this structure uses different independent convolution layers for each
passband, significantly reducing interference between channels and enabling better acquisition of
important information of different channels.

This study improved the basic network model framework of YOlOv11 to adapt to underwater
target detection tasks with variable light conditions, large variations in target scales, and turbid water
quality environments. This network structure is mainly composed of Backbone, Neck, and Head.

Backbone part of this study introduces SRFD module to replace the first two convolution layers
of the original structure, and all other convolution modules in this part are replaced by the DRFD
module [23].

The Neck part is used to connect the Backbone and Head, and mainly used for fusion of multi-
scale features. To extract deep features without losing important feature information, DRFD is also
used to replace the feature upsampling modules of medium-sized and large-sized targets.

Finally, the Head part is mainly used for the detection and classification of targets based on the
features extracted from the Backbone and Neck networks. The improved detection structure is
shown in Figure 1.

Figure 1. Overall structure of SUD-YOLO

3.3. High-low frequency feature sampling module

The adoption of the high and low frequency feature sampling module (SRFD and DRFD) in this
detection structure is, on one hand, to replace the traditional upsampling module while ensuring that
the original feature information will not be lost and extracting additional content further. Due to the
blurry nature of underwater images, after multiple layers of feature extraction, much noise
information may be generated during training, which often leads to instability in the training process
of model. This instability will be amplified in inappropriate upsampling and downsampling,
resulting in the difficulty of model convergence. For the high-frequency features of underwater
images, these features retain the texture details of the objects and often have certain discrimination
against different shapes of underwater objects. This information is, on the one hand, dependent on
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the quality of the low-level feature extraction layer in the detection network, and on the other hand,
depends on the feature discrimination ability of the subsequent deep structure. At the same time, for
the high-frequency features of the image, especially for blurry underwater images, most of these
features are generated by noise. These noises may be determined by environmental factors such as
light intensity and water quality, and for the targets to be detected, most of these are interference
information. To remove these types of noise, for deep layer modules in the network structure, better
feature filtering ability is required. To increase stability of sampling, batch normalization is added in
SRFD and DRFD, providing a guarantee for the stable forward and backward propagation of the
feature flow in this module. The optimized module structure is shown in Figures 2 and 3.

Figure 2. The structure of SRFD. ⊕ represents the concat operation. The elements below each
tensor represent the size of channels, height and width respectively

Figure 3. The structure of DRFD. GeLu represents the Gaussian Error Linear Units activation
function

3.4. Efficient Detection Head

The hybrid detection head has certain advantages in terms of parameter quantity and efficiency for
simple tasks due to its one-step nature. However, for such complex tasks, the hybrid detection
structure is prone to cause interference among feature information, thereby directly affecting the
final detection performance and accuracy. In other words, for the final detection tasks, which mainly
involve the positioning of target boxes and the classification of target categories, the features that are
focused on for these two tasks may be different. Therefore, the traditional strategy of sharing a
single feature in complex tasks cannot fully exert the advantages of the model itself [24]. For this
problem, in this experiment, the decoupled Efficient Detection Head proposed in the YOLOv6
structure [25] was adopted to replace the original hybrid detection head structure (Figure 4).
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Figure 4. The structure of Efficient Detection Head. Reg represents the number of regression boxes,
while NC stands for the number of classification categories

4. Experiments

In this section, we will evaluate the performance of the high and low frequency feature sampling
module and efficient head combined with the YOLOv11 basic structure. On one hand, we will verify
it through various detection metrics of the Deepfish, Luderick and URPC2020 datasets. On the other
hand, we will examine the coupling between the modules in the form of ablation experiments.

4.1. Datasets

Deepfish dataset [26] is a publicly available large-scale benchmark for marine fish image
segmentation and detection. This dataset contains over 20 different marine fish habitats and more
than 40,000 high-definition underwater images from the subtropical region. In this experiment,
4,405 images were selected as the training and evaluation benchmark for this detection task. The
target category was limited to fish, and this sub-dataset also included all different underwater
environments in the original dataset. To facilitate subsequent verification and comparison of model
performance, it was further divided into a training set of 3,596 images and a validation set of 809
images.

Luderick dataset [27] was proposed to enable training of high-quality automatic annotation
models. The images in this dataset come from two river basins in southeastern Australia, the Tweed
estuary basin, and the Tallebudgera Creek basin with extensive seagrass coverage. The original data
collection was captured by underwater mobile cameras, recording videos of Luderick fish and
Australian bream in dense seagrass backgrounds. This study selected 3,496 images from it as the
evaluation basis and conducted a unified single-class target detection task for fish.

URPC2020 dataset [28] originated from the Underwater Robot Picking Contest in 2020. The
original dataset was collected by underwater remote robots. The purpose of this competition was to
combine underwater target detection with robots, providing more data sources that are more in line
with the real underwater environment for the target detection field. In this experiment, 5,351 images
were selected as the training set and 1,534 as the validation set. It included four different target
categories: echinus, holothurian, scallop, and starfish.
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4.2. Experimental setup

4.2.1. Evaluation metrics

This experiment will comprehensively evaluate the performance of the model on different datasets
through Precision, Recall, F1-score, AP and MAP. Firstly, the accuracy rate serves as the evaluation
metric for the overall performance of the model. This metric represents the proportion of truly
correct instances among all the results that are detected as positive examples, reflecting precision of
model. It is defined as:

(1)

where TP represents the number of positive samples in the detection results, and FP is the number
of samples that were detected as positive but actually were negative. Secondly, the recall rate
indicates the proportion of all Ground Truth samples that were detected by the model, reflecting the
model's completeness in detection. The formula is defined as:

(2)

where FN refers to the number of negative samples that are detected as negative cases.
Since Precision and Recall can change completely opposite ways due to the influence of FP or

FN, to better balance the relationship between them, the introduction of the F1-score metric
alleviates this problem. It is defined as follows:

(3)

In the above formula, the definitions of Precision and Recall have been provided by (1) and (2).
Fourthly, the detection accuracy of each category is measured using the AP (Average Precision)

metric. In this experiment, the sample selection criteria for each category is IOU of 0.5. This metric
can better reflect the performance of the model in detecting specific categories, which is expressed
as:

(4)

P(r) refers to the function of Precision with respect to Recall, where r represents the recall rate. In
general, this means integrating the PR curve with respect to the recall rate r.

Finally, to evaluate the comprehensive detection performance of the model for all categories, this
experiment adopted MAP as the measurement standard. The samples used to calculate this indicator
were selected based on the criterion of having an IOU of 0.5 or an IOU between 0.5 and 0.95. The
calculation details are as follows:

Precision = TP

TP+FP

Recall = TP

TP+FN

F1 − score = 2*(Precision*Recall)
Precision+Recall

AP = ∫ P (r)dr
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(5)

where NC represents the total number of all sample categories in this dataset, and    
represents the average accuracy rate calculated for each category.

4.2.2.  Implementation detail

The GPU model used in this experiment is Nvidia GeForce 2080Ti, which is deployed on the
Windows 10 operating system. The environment used for this model is Python 3.10 and CUDA 12.1
version.

The model structure adopts the YOLOv11s model in the YOLOv11 version, and the configuration
is that image input size is 640 and the batch-size is 16. The loss function is chosen as CIOU, the
optimizer is selected as SGD, the learning rate and weight decay rate are set to 0.01 and 0.0005
respectively, and the training cycle is set to 100 epochs. Mosaic enhancement is turned off in the last
10 epochs. Additionally, the YOLOv5 and YOLOv3 versions used in the comparative experiments
also adopt similar settings.

4.3. Experimental results

Firstly, the detection results of the SUD-YOLOv11 model on the URPC2020, Luderick and
Deepfish datasets are shown in Figure 5. Where, the three rows represent the detection results of the
model on URPC2020, Luderick and Deepfish respectively. Each row consists of the Ground Truth
and prediction labels after model inference for comparison. To comprehensively evaluate the
performance of the model on different underwater datasets, Table I. presents the results using three
evaluation metrics (Precision, Recall and MAP). Besides the performance differences between
different datasets, the comparative experiments can directly reflect the advantages and disadvantages
of different models. Therefore, YOLOv3, YOLOv5 and YOLOv11 were also compared.

Figure 5. The comparison results of SUD-YOLO on different datasets. The first and third columns
are ground truth, the second and fourth columns are the detection results

MAP = 1
NC

∑NC

i=1 AP i

AP i
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Table 1. Performance on datasets

Dataset Method F1-score Recall MAP_0.5 MAP_0.5:0.95

URPC2020

YOLOv3 0.806 0.777 0.841 0.464
YOLOv5 0.809 0.782 0.847 0.476
YOLOv11 0.786 0.748 0.831 0.488

SUD-YOLO（Ours） 0.810 0.784 0.852 0.504

Luderick

YOLOv3 0.842 0.814 0.883 0.505
YOLOv5 0.842 0.814 0.883 0.505
YOLOv11 0.875 0.863 0.911 0.586

SUD-YOLO（Ours） 0.901 0.891 0.929 0.627

Deepfish

YOLOv3 0.959 0.950 0.981 0.662
YOLOv5 0.954 0.948 0.981 0.654
YOLOv11 0.937 0.920 0.969 0.653

SUD-YOLO（Ours） 0.948 0.944 0.976 0.672

Table 2. Ablation experiment based on YOLOv11

Dataset Modules F1-score Recall MAP_0.5 MAP_0.5:0.95

URPC2020

YOLO11 0.786 0.748 0.831 0.488
+SRFD 0.789 0.756 0.841 0.493

+EfficientHead 0.795 0.769 0.843 0.498
+all 0.806 0.779 0.852 0.504

Luderick

YOLO11 0.875 0.863 0.911 0.586
+SRFD 0.880 0.876 0.923 0.608

+EfficientHead 0.881 0.866 0.921 0.621
+all 0.893 0.877 0.929 0.627

Deepfish

YOLO11 0.937 0.920 0.969 0.653
+SRFD 0.940 0.927 0.973 0.659

+EfficientHead 0.942 0.938 0.975 0.661
+all 0.941 0.94 0.976 0.672

Overall, from the detection results of the optimized model on the three datasets, for the MAP
metric with an intersection-over-union (IOU) of 0.5, it achieved better performance than other
models on both URPC2020 and Luderick datasets. Moreover, at higher IOU levels (MAP50:95), it
could perform optimally on all three datasets. The F1-score takes into account precision and recall
rate of the model, and demonstrates stability of the model in detecting positive and negative samples
on URPC and Luderick. From the URPC2020 dataset, compared to the baseline model YOLOv11,
there are improvements in all metrics, with the Recall metric showing the most significant
improvement, approximately 3% increase. Additionally, compared to YOLOv3 and YOLOv5
models, the MAP metrics have improved by 1%-2% within different IOU ranges of 0.5 and 0.95.
For Luderick dataset, this model outperformed other models in all metrics, with a 4% improvement
in MAP50:95 compared to the baseline model, and a 12% improvement compared to other models.
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Although the Deepfish dataset did not outperform YOLOv3 in Precision, Recall, and MAP50, it still
showed a significant difference in the MAP50:95 metric, demonstrating better recognition
performance for positive samples.

From the above results, this model shows significant advantages over the baseline model
YOLOv11, as well as models v3 and v5. To further illustrate introduction meaning of the SRFD,
DRFD, and Efficient Head modules, this study used ablation experiments to verify this point. This
study separately tested high and low frequency sampling modules (SRFD and DRFD) and the
Efficient Head module. In Table 2, "+SRFD" represents adding the SRFD and DRFD modules to the
Yolov11 structure, "+EfficientHead" represents only adding the Efficient Head detection head
structure, and "+all" represents the detection results after combining both modules. For all datasets,
the introduction of the high and low frequency sampling modules not only improved the F1-score
but also improved the Recall and MAP metrics. This module showed the most significant
improvement for the Luderick dataset, averaging an improvement of over 1% in all detection
metrics. The introduction of the Efficient Head module improved Recall by approximately 2% for
both URPC2020 and Deepfish datasets. The replacement of the detection head, compared to the high
and low frequency sampling modules, had a more significant improvement in detection accuracy.
Finally, the integration of the two modules overall achieved a good fit with the model structure,
reaching the optimal or near-optimal level on all datasets.

From the training process, the introduction of these modules had a significant impact on the
stability and convergence of training. Figure 5 shows the update trend graphs of the four important
indicators of each dataset over 100 training epochs. The improved model, compared to the baseline
model, had smaller fluctuations in precision in the first 50 epochs, a more stable improvement trend,
and a smoother update process, which was reflected in all three datasets. From the MAP metric, the
training stability of the Deepfish dataset has improved the most significantly. Meanwhile, for the
other two datasets, its contribution mainly lies in faster convergence of the model in the first 20
rounds. Similarly, the stable improvement in the recall rate metric is also reflected in the results.

Figure 6. The comparison results between SUD-YOLO and YOLOv11 on different datasets during
different traning periods. For each dataset, the first column of figures shows metrics of SUD-YOLO,

and the second column is for YOLOv11
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5. Conclusion

This research is based on the structure of YOLOv11 and introduces a high-low frequency sampling
module and an efficient detection head structure, enabling the model to obtain relatively robust
results on three different underwater datasets.

Firstly, regarding the improvement of the model, a high-frequency sampling module is adopted in
the Backbone to replace the downsampling layers of two convolutional layers. On the one hand, it
ensures the fusion performance of multi-scale features. On the other hand, it prevents a large amount
of important texture information from being lost during the shallow layer feature transmission
process. This information is very important in the complex underwater target detection task and
more stable feature extraction and more effective information fusion are the advantages of the high-
frequency sampling module. The Cut-Slice method ensures that the features can be downsampled
without losing too much useful details, and the DwConv can well perform feature scaling, while the
GConv can improve the computational efficiency when fusing different scale information.

For the deep convolutional layers in the backbone network, a low-frequency sampling module is
used for replacement. This module, in addition to the Cut-Slice, GConv and DwConv in the high-
frequency sampling module, also adds the Gelu function to prevent the gradient disappearance
situation of deep features during the gradient backpropagation process. This is helpful for the
stability and convergence of the model.

The improvement of the detection head structure brings an enhancement in the ablation
experiment section. Due to its decoupled detection structure, compared with the traditional mixed
detection head of other models, this separated detection structure can reduce the interference
between detection box results and classification results. This characteristic makes this module show
the most significant improvement on the URPC2020 dataset, which has a large number of objects to
be detected and significant deformation of the image itself, as well as obvious differences in light
and shade between images. Additionally, the biggest challenge for the stability of model training lies
in the imbalance of categories in this dataset, which causes noise interference to the parameter
updates of scarce categories for the ones with a larger number. This also demonstrates the
importance of introducing EfficientHead to solve such problems.

Finally, the final model based on the improvements of these two modules outperforms the
baseline model overall, and the compared models also show good generalization on the three
datasets. It demonstrates the good adaptability of this model to the variable underwater datasets. The
Luderick dataset is clearer in the environmental background compared to URPC2020 and Deepfish.
To some extent, this also proves that this model does not only perform well in blurry or clear
datasets. Similarly, this model can also be applied to detect environments with complex and variable
environmental conditions, such as scenes with fog or dim lighting. For datasets with diverse data
distributions and significant changes in the image domain, this method or further improvements can
be attempted in future research.
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