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Abstract.  Transformer models have achieved groundbreaking success in computer vision
tasks, yet their deployment on resource-constrained edge devices remains challenging due to
high computational complexity, memory demands, and hardware inefficiencies. This paper
presents a holistic optimization framework to address these issues for real-time image
processing in edge environments, particularly in autonomous driving systems. We propose a
dynamic structured pruning method that adjusts model sparsity based on real-time scene
complexity, combined with post-training quantization to compress model size while
preserving accuracy. In addition, we co-design the algorithm with FPGA and SoC hardware
platforms, leveraging custom sparse kernels, memory hierarchy optimization, and energy-
efficient execution techniques. Evaluated on the KITTI and Cityscapes datasets, our method
achieves a 55% reduction in inference latency with less than a 2% loss in accuracy, and
improves energy efficiency by up to 3.1×. Real-world tests confirm the robustness of the
system under diverse operating conditions. This work offers a scalable and adaptable
solution for deploying high-performance Transformer models in edge AI applications.

Keywords: Vision Transformers, Dynamic Structured Pruning, Post-Training Quantization,
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1. Introduction

The advent of Transformers has marked a paradigm shift in artificial intelligence, extending their
groundbreaking success from natural language processing (NLP) to the domain of computer vision
(CV). Initially designed for sequential data, Transformers have redefined visual tasks by introducing
self-attention mechanisms that capture global dependencies more effectively than traditional
convolutional neural networks (CNNs). Vision Transformers (ViT) exemplify this transition by
dividing images into patches and processing them as sequences, achieving state-of-the-art
performance in image classification [1]. Similarly, Swin Transformers enhance efficiency through
hierarchical feature maps and shifted windows, enabling scalability for dense prediction tasks
[2].Further advancements, such as DETR, have demonstrated the potential of Transformers in object
detection by replacing hand-crafted components, such as anchor boxes, with end-to-end trainable
architectures [3]. These models excel at capturing long-range dependencies, resulting in superior
performance on benchmarks such as ImageNet and COCO. However, their high computational
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demands and large memory footprint present significant challenges, particularly in resource-
constrained environments.

Despite their impressive performance, deploying Transformer models on edge devices—such as
automotive System-on-Chips (SoCs)—presents three major bottlenecks:

1.1. Computational complexity

The self-attention mechanism scales quadratically with input size, resulting in excessive floating-
point operations (FLOPs) [4]. For instance, processing high-resolution images in real time becomes
infeasible due to the exponential increase in computational overhead.

1.2. Memory constraints

Transformer models—especially large variants such as ViT-Large, which has 307 million parameters
—require substantial memory bandwidth. Edge devices often lack sufficient on-chip memory to
store these weights, resulting in frequent off-chip memory access and increased latency [5].

1.3. Hardware inefficiency

General-purpose hardware, such as GPUs, struggles to efficiently handle the sparse computations
introduced by pruning or dynamic architectures. In contrast, specialized hardware—such as FPGAs
and ASICs—requires platform-specific optimizations to realize meaningful efficiency gains
[6].These challenges are further exacerbated in dynamic environments such as autonomous driving,
where both low latency and high accuracy are critical. Existing optimization techniques fail to
comprehensively address these constraints. Pruning methods, such as TPrune, introduce structured
sparsity to reduce model size, but they lack adaptability to varying input complexities. As a result,
static pruning strategies often underutilize hardware resources or degrade accuracy in diverse
scenarios [7]. Quantization—particularly post-training quantization (PTQ)—reduces numerical
precision to lower memory usage; however, aggressive quantization in dense scenes, such as urban
environments, can lead to significant accuracy loss [4]. Moreover, many optimization approaches
are hardware-agnostic and fail to account for the unique constraints of specific target platforms. For
instance, the memory hierarchy of embedded systems like the Rockchip RK3588 is frequently
overlooked, resulting in suboptimal deployment. These limitations underscore the need for a holistic
solution that balances efficiency, adaptability, and hardware awareness.This work proposes a novel
framework to address the aforementioned challenges, with the following key contributions:

1.4. Dynamic structured pruning

An input-aware sparsity adjustment algorithm that dynamically adapts the model’s computational
load based on scene complexity [7], ensuring optimal resource utilization without compromising
accuracy.

1.5. FPGA-hardware co-design

A tailored optimization approach for sparse matrix computations that leverages FPGA-specific
features such as parallel processing and configurable memory hierarchies [4]. This design
maximizes memory bandwidth efficiency and reduces latency.
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1.6. Real-world validation

Comprehensive evaluation on automotive vision datasets (KITTI and Cityscapes) demonstrates a
55% reduction in inference latency with less than a 2% drop in mean Average Precision (mAP). The
proposed solution is further deployed on edge devices to validate its practicality in real-world
scenarios.

By addressing the gaps in computational efficiency, memory constraints, and hardware
compatibility, this work paves the way for the deployment of high-performance Transformer models
on resource-constrained edge devices. The proposed methods not only improve scalability but also
ensure robustness in dynamic environments, making them well-suited for applications such as
autonomous driving and real-time surveillance.

2. Literature review

The rapid adoption of Transformer models in computer vision has driven extensive research into
optimization techniques and hardware acceleration strategies. This section reviews key
advancements in Transformer compression, hardware acceleration, and the specific requirements of
autonomous driving systems.

2.1. Transformer compression techniques

2.1.1. Pruning

Pruning is a widely adopted technique for reducing the computational and memory footprint of
Transformer models. One notable method, TPrune, introduces Block-wise Structured Sparsity
Learning (BSSL), which selectively removes redundant attention heads or feed-forward network
blocks while preserving the encoder-decoder attention structure [7]. However, TPrune employs a
static pruning strategy, wherein the sparsity pattern remains fixed after training, limiting its
adaptability to dynamic input complexities, such as varying object densities in autonomous driving
scenes. Furthermore, pruning strategies must consider fundamental differences between computer
vision (CV) and natural language processing (NLP) tasks. Unlike NLP, where attention heads
primarily capture sequential relationships, Vision Transformers (ViTs) process spatial data,
necessitating layer-specific pruning thresholds—early layers capture low-level features like edges,
whereas deeper layers extract higher-level semantic information, such as object parts [1].
Consequently, uniform pruning across layers can degrade performance, underscoring the need for
adaptive approaches that account for spatial attention mechanisms.

2.1.2. Quantization

Quantization reduces model precision to decrease memory usage and accelerate inference [4]. The
two primary strategies are Post-Training Quantization (PTQ) and Quantization-Aware Training
(QAT). PTQ converts a pre-trained model to lower precision (e.g., 8-bit) without retraining,
achieving up to a 4× reduction in memory footprint. However, it often struggles to preserve the
dynamic range of attention scores within Transformer layers, resulting in accuracy degradation in
dense scenes. In contrast, QAT simulates quantization during training, enabling the model to adapt
to reduced precision and thereby maintain higher accuracy, albeit at the cost of additional training
overhead, which can impede rapid deployment. To balance efficiency and performance, recent
research has explored hybrid approaches such as mixed-precision quantization, where critical layers
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—like attention mechanisms—retain higher precision, while less sensitive components, such as
feed-forward networks, undergo more aggressive quantization. These methods improve overall
trade-offs but require hardware support for heterogeneous precision operations.

2.2. Hardware acceleration

2.2.1. FPGA/ASIC optimization

Specialized hardware platforms, such as FPGAs and ASICs, are increasingly employed to accelerate
Transformer inference by addressing computational and memory challenges [4]. Given that Multi-
Head Self-Attention (MHSA) dominates Transformer workloads, efficient matrix multiplication is
critical; systolic arrays enable high-throughput operations by organizing processing elements in a
grid structure [8]. However, traditional designs often lack support for sparsity, missing opportunities
to skip zero-valued computations in pruned models. To address this limitation, sparsity-aware
architectures have emerged. For example, modern GPUs equipped with sparse tensor cores can
accelerate irregular computations, although their performance depends heavily on the regularity of
the sparsity pattern. Custom ASICs with gating mechanisms for zero-skipping offer greater
flexibility but require co-design with pruning algorithms [4]. Additionally, the large parameter sizes
of Transformers create memory bottlenecks, particularly on edge devices [5]. Techniques such as
ChargeCache optimize DRAM access by exploiting row buffer locality, reducing latency by up to
30%, while customizable on-chip memory hierarchies in FPGAs can minimize off-chip data
transfers—albeit requiring careful trade-offs between resource allocation and parallelism.

2.2.2. GPU optimizations

While GPUs remain the default platform for training Transformers, their inefficiency in handling
sparse computations limits their effectiveness for pruned models [6]. Techniques such as kernel
fusion aim to reduce overhead by combining multiple operations—such as matrix multiplications
and activations—into a single GPU kernel, thereby improving throughput. However, the dynamic
sparsity inherent in attention mechanisms complicates these fusion strategies. Additionally, although
NVIDIA’s tensor cores are highly effective at accelerating dense matrix operations, they are often
underutilized in sparse workloads. Ongoing research seeks to overcome this limitation by efficiently
mapping pruned attention patterns onto tensor core operations.

2.3. Autonomous driving requirements

2.3.1. Dynamic scenes

Autonomous driving systems operate in highly dynamic environments characterized by varying
object densities, lighting conditions, and occlusion patterns. Models such as DETR face challenges
in achieving real-time performance under these conditions due to the quadratic complexity of their
attention mechanisms [3]. Although techniques like pruning and quantization can improve
efficiency, they often struggle to adapt to sudden changes in scene complexity, such as transitions
from highways to dense urban traffic [4,7]. To address this limitation, recent research has explored
input-adaptive models that dynamically adjust computational load based on input difficulty—for
example, employing simplified attention paths for straightforward frames, such as empty roads,
while activating the full model capacity for more complex scenes. However, integrating these
adaptive strategies with hardware accelerators remains a significant challenge [8].
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2.3.2. Energy constraints

Edge deployment in automotive systems demands strict energy efficiency, exemplified by Tesla’s
Full Self-Driving (FSD) chips, which operate within a 10 W power envelope for Advanced Driver-
Assistance Systems (ADAS). This constraint necessitates sparsity-aware designs that minimize
redundant computations to conserve energy. Additionally, sustained high workloads can cause
thermal throttling, thereby limiting performance. To mitigate these issues, techniques such as
dynamic voltage and frequency scaling (DVFS) are employed to balance power consumption and
computational throughput; however, effective implementation requires careful hardware-software
co-optimization [9].

2.4. Research gaps and opportunities

Several key research gaps present opportunities for advancing the efficient deployment of
Transformers on edge devices. First, current pruning methods are predominantly static, whereas
input-adaptive sparsity could more effectively accommodate varying scene complexities. Second,
most existing optimizations are hardware-agnostic, underscoring the need for platform-specific
strategies, particularly for specialized hardware such as FPGAs. Third, energy-aware training
techniques that incorporate constraints like FLOPs-aware loss functions remain underexplored and
hold potential to enhance compatibility with resource-limited edge environments. Finally, there is a
pressing need for models with real-time adaptability, enabling dynamic computational adjustments
without incurring reconfiguration overhead—an essential feature for autonomous systems operating
under unpredictable conditions.

This review underscores the need for holistic solutions that integrate algorithmic efficiency,
hardware awareness, and real-world deployment constraints. The following section details our
proposed framework designed to address these gaps.

3. Methodology

The increasing deployment of deep learning models in real-time systems, such as autonomous
vehicles, necessitates the development of efficient algorithm-hardware co-design frameworks.
Transformer models, renowned for their state-of-the-art performance in vision tasks, often present
challenges related to computational complexity and memory consumption—particularly when
deployed on resource-constrained edge devices. This work proposes a robust and scalable
framework specifically tailored for deploying Transformers in such environments, with a focus on
autonomous driving applications. By addressing challenges related to computational overhead,
memory bottlenecks, and hardware inefficiency, the proposed approach integrates dynamic
structured pruning, post-training quantization (PTQ), and specialized hardware acceleration into a
cohesive methodology.

3.1. Algorithm-hardware co-design framework

The foundation of our approach is a two-layer co-design strategy, consisting of a model compression
layer and a hardware acceleration layer. The model compression layer is designed to reduce the
Transformer model’s size and computational demands through a novel combination of dynamic
pruning and quantization techniques. Notably, dynamic pruning distinguishes itself from traditional
static methods by adjusting network sparsity on-the-fly in response to real-time input characteristics.
This enables the model to efficiently allocate resources where they are most needed, such as in
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dense urban scenes. Following pruning, an 8-bit post-training quantization (PTQ) scheme is applied,
further compressing the model while employing mixed-precision for sensitive attention layers to
preserve accuracy [4,7].

In tandem, the hardware acceleration layer maps the compressed model onto FPGA and SoC
platforms, optimizing both memory utilization and computational throughput [4]. Custom sparse-
kernel units are deployed to accelerate pruned attention mechanisms on FPGAs, while the memory
hierarchy of the Rockchip RK3588 SoC is meticulously leveraged to minimize latency. This co-
design paradigm ensures that algorithmic decisions are guided by hardware constraints and
opportunities, enabling end-to-end efficiency improvements beyond the capabilities of static
approaches.

3.2. Dynamic structured pruning

At the core of the model compression strategy is Dynamic Structured Pruning, an extension of
Block-wise Structured Sparsity Learning (BSSL) [7]. The key innovation lies in the input-aware
adaptability of the pruning process. To quantify input complexity, a lightweight YOLOv5 module
estimates real-time scene density by measuring vehicle density within the camera’s field of view.
This metric dynamically guides pruning decisions: in low-complexity highway scenes, sparsity
levels can reach up to 60% without significant accuracy loss; conversely, dense urban scenes require
reduced sparsity, down to 20%, to maintain model performance. Consequently, this dynamic pruning
mechanism provides fine-grained control over the computational graph, minimizing unnecessary
calculations without the need for manual tuning.

The model is trained using a compound loss function that balances task accuracy with model
sparsity. This function combines a standard cross-entropy loss term with an L1 regularization term
applied to masked weights, ensuring that the model learns not only to perform the primary task but
also to do so efficiently. The sparsity coefficient within the loss function is carefully tuned to
achieve an optimal trade-off between performance and compression. From an implementation
perspective, pruning thresholds are set on a per-layer basis—particularly for spatial attention heads
within Vision Transformers (ViTs)—based on their relative contribution to the final output. Pruning
is applied iteratively during fine-tuning, with sparsity gradually increased to prevent abrupt declines
in model performance.

3.3. Hardware optimization

On the hardware side, the Rockchip RK3588 SoC is enhanced using ChargeCache technology and a
hierarchical memory architecture [4,5]. Attention weights are stored in on-chip SRAM, reducing
DRAM accesses by up to 40%—a major contributor to latency in deep learning pipelines. A
locality-aware data placement strategy increases DRAM row buffer hit rates, while direct memory
access (DMA) engines prefetch required parameters to minimize latency during execution.
Concurrently, on the FPGA, a highly customized pipeline is implemented, incorporating sparse
matrix units that utilize a Compressed Block Row (CBR) format to store weights. This format skips
zero-value blocks and accelerates General Matrix Multiply (GEMM) operations by up to 3.2×
compared to dense formats.

The parallel processing capabilities of the FPGA are fully leveraged, with multiple sparse kernels
concurrently handling non-zero blocks. The dataflow is optimized through a systolic array-based
architecture, which efficiently executes multi-head self-attention (MHSA) operations while
minimizing idle cycles [8]. Real-time decoding of sparsity patterns further reduces overhead by



Proceedings	of	CONF-MLA	2025	Symposium:	Intelligent	Systems	and	Automation:	AI	Models,	IoT,	and	Robotic	Algorithms
DOI:	10.54254/2755-2721/2025.LD25924

13

eliminating the need for additional preprocessing. Energy efficiency is improved via dynamic
voltage and frequency scaling (DVFS), which adjusts the system’s clock rate according to workload
intensity. Additionally, zero-skipping logic enables circuits to bypass operations on pruned weights,
effectively reducing dynamic power consumption.

3.4. Integration and real-time execution

The system’s execution pipeline is divided into three stages: preprocessing, inference, and
postprocessing. During preprocessing, the YOLOv5 module assesses scene complexity and
configures an appropriate pruning mask. The inference stage executes the pruned and quantized
model on the FPGA–RK3588 hybrid platform, utilizing sparse kernels to efficiently process
attention mechanisms. In the final postprocessing stage, output data—such as detected object
coordinates and classifications—are refined and transmitted to downstream systems. This three-
phase pipeline ensures adaptability to environmental changes while meeting real-time operational
constraints.

4. Evaluation and results

To evaluate the effectiveness of our method, we conducted extensive experiments using the KITTI
and Cityscapes datasets, deploying the model on a hybrid FPGA–RK3588 hardware platform. Our
evaluation focuses on five key aspects: model performance, hardware efficiency, energy
consumption, comparative advantage over existing methods, and validation through real-world
deployment.

In terms of model accuracy, we employed two standard metrics: mean Average Precision (mAP)
for object detection and mean Intersection-over-Union (mIoU) for semantic segmentation. Our
results demonstrate that dynamic pruning achieves a superior trade-off between compression and
accuracy. At a 55% compression level, our method attains 76.8% mAP and 71.1% mIoU—reflecting
a minimal decline of only 1.4% and 1.6% from the baseline values of 78.2% and 72.5%,
respectively. In contrast, static pruning results in a more pronounced accuracy reduction—3.9% for
mAP and 3.6% for mIoU at the same compression rate. Furthermore, the accuracy-compression
curve for dynamic pruning exhibits a smooth and gradual degradation, maintaining over 95% of
baseline accuracy up to 60% compression. Conversely, static pruning experiences abrupt
performance drops beyond the 50% compression threshold. Notably, early Transformer layers
subjected to dynamic pruning demonstrate 20–30% greater tolerance to sparsity, and attention heads
responsible for low-frequency features are pruned more aggressively without compromising
accuracy.

Latency measurements demonstrate substantial performance gains. Our method reduces inference
latency from 51 ms (baseline) to 23 ms, representing a 55% reduction. In comparison, static pruning
achieves a 37% reduction, lowering latency to 32 ms. A detailed breakdown attributes 40% of the
improvement to sparse GEMM acceleration, 35% to memory optimizations via ChargeCache, and
25% to pipelined execution. This cumulative enhancement enables real-time throughput of 43
frames per second (FPS), meeting the temporal requirements of autonomous navigation systems.
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Figure 1. illustrates the impact of model compression on both precision (left y-axis, blue line) and
inference latency (right y-axis, red dashed line) across varying compression ratios. As the

compression ratio increases—from 0.4 to 1.0—precision improves markedly, particularly between
0.4 and 0.7, before plateauing near its maximum value. Conversely, latency remains relatively low

and stable at lower compression ratios but rises sharply beyond 0.8, indicating an exponential
increase. This demonstrates a trade-off: although higher compression enhances precision, it also

incurs substantial latency, which may be unsuitable for real-time applications

Energy consumption analyses further validate the superiority of our approach. Thermal maps
generated under both urban congestion and highway scenarios demonstrate that dynamic pruning
significantly reduces power usage. In congested conditions, peak power consumption decreases
from 4.8 W (static pruning) to 3.2 W, with hotspots primarily localized in attention layers. On
highways, average power consumption falls from 3.0 W to 2.1 W. Energy per inference improves by
a factor of 3.1× in urban traffic and 2.7× in open-road settings. Additionally, power variance is
reduced by 58%, enabling improved thermal predictability and facilitating simpler cooling solutions.

When benchmarked against existing pruning and quantization solutions, our method outperforms
competitors across multiple dimensions. Compared to TPrune, it achieves a 15% higher mean
Average Precision (mAP) in dense scenes and doubles energy efficiency. Relative to FPGA-Quant,
our framework reduces memory bandwidth usage by 37% and lowers energy consumption by a
factor of 2.3×. Compared with GPU-based solutions such as the NVIDIA Jetson AGX, our approach
is 4.8× more energy-efficient and features a 68% smaller memory footprint.

Real-world deployment tests conducted over 2,000 km of diverse road conditions confirm the
practical viability of our system. Latency remains stable at 28 ± 2 ms under varying lighting
conditions, and the system operates reliably across a broad temperature range (–20°C to 85°C). With
an uptime of 99.2%, our solution meets the stringent demands of automotive applications.

5. Conclusions and future work

This work presents a comprehensive and adaptive framework for deploying Transformer-based
models in edge environments. By integrating algorithmic techniques—such as dynamic pruning and
quantization—with low-level hardware optimizations, we demonstrate that deep learning models
can achieve state-of-the-art performance under real-time, energy-constrained conditions. Our
implementation represents the first deployment of input-aware dynamic pruning on automotive
SoCs like the Rockchip RK3588, maintaining model accuracy while achieving up to 55% latency
reduction alongside substantial power savings.
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Innovations such as sparse matrix computation using the Compressed Block Row (CBR) format
and DRAM optimization through ChargeCache further enhance the system’s capabilities. However,
certain limitations persist. The framework has yet to be evaluated under extreme weather and
lighting conditions (e.g., fog, snow, or strobe lighting), and model accuracy deteriorates markedly
when compression exceeds 65%. Additionally, modifications to the model architecture necessitate
FPGA reprogramming, which constrains rapid adaptability.

Future directions include extending this pruning strategy to Point Transformers for LiDAR-based
3D detection, incorporating voxel-aware pruning to effectively handle irregular point distributions,
and integrating low-rank adaptation methods (e.g., LoRA) for deployment on open RISC-V AI
accelerators. Additionally, there is potential for cross-modal expansion, such as optimizing joint
vision-language models for in-cabin AI systems, where shared attention mechanisms can reduce
computational redundancy.

Overall, our work offers a blueprint for next-generation edge AI systems, paving the way for
efficient, adaptive, and robust deployment of Transformer models in automotive and other compute-
constrained domains.
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