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Abstract.  Federated learning (FL) is a crucial technology for healthcare, IoT, and finance
applications. This paper evaluates recent advancements in FL from 2023 to 2025, focusing
on optimization algorithms, privacy-preserving techniques, communication efficiency, and
real-world applications. It compares algorithms like FedAvg, FedProx, SCAFFOLD, and
FedDyn, assessing their performance under data heterogeneity and communication
constraints. Privacy techniques like differential privacy and secure aggregation are evaluated
for accuracy and computational overhead. Communication-efficient methods and real-world
deployments are also analyzed. The evaluation offers actionable insights for selecting
appropriate FL methods for specific use cases.
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1. Introduction

Federated learning (FL) has emerged as a pivotal paradigm for distributed machine learning,
allowing multiple devices to collaboratively train models without sharing sensitive data. Since its
introduction, FL has gained traction in privacy-sensitive domains like healthcare and IoT, driven by
stringent data protection regulations such as GDPR and HIPAA. Federated learning (FL) is a
distributed machine learning paradigm that trains models on local data and aggregates it to a central
server, preserving privacy and avoiding raw data transmission [1]. It is categorized into horizontal,
vertical, and transfer learning based on data distribution. Challenges include communication
efficiency, statistical heterogeneity, system heterogeneity, and privacy/security threats, necessitating
robust evaluation of proposed solutions [2]. However, the diversity of FL algorithms and techniques
necessitates rigorous evaluation to understand their performance, trade-offs, and suitability. This
paper critically evaluates FL developments from 2023 to 2025, comparing optimization algorithms,
privacy techniques, communication methods, and applications. By analyzing metrics such as
accuracy, convergence speed, communication cost, computational overhead, and privacy guarantees,
this paper aim to provide insights for researchers and practitioners. The structure includes sections
on background, evaluation framework, optimization algorithms, privacy techniques, communication
efficiency, applications, challenges, and future directions, concluding with a synthesis of findings.
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2. Evaluation framework

Evaluating FL algorithms requires a comprehensive framework addressing utility, efficiency,
privacy, and security. Standardized platforms such as FedEval enable consistent cross-dimensional
benchmarking, while datasets like LEAF facilitate algorithm testing under realistic scenarios—
including non-IID data distributions and heterogeneous client capabilities [3,4]. A rigorous
evaluation of a distributed learning system balances its utility —quantified by accuracy, F1-score,
convergence speed, and generalization ability on benchmarks like MNIST and CIFAR-10—against
its operational efficiency in terms of communication cost, computational overhead, and scalability.
This performance-efficiency trade-off is further constrained by the system's privacy guarantees,
evaluated using differential privacy budget (ϵ) and resistance to inference attacks. Simultaneously,
its security posture must be validated for robustness against adversarial actions like poisoning,
backdoor, or model inversion attacks, with resilience measured by either minimal accuracy
degradation or effective attack detection. By ensuring result reproducibility, this framework
establishes a foundation for fair comparisons across diverse FL methodologies.

3. Comparative analysis of optimization algorithms

Optimization algorithms are critical for addressing FL challenges, especially data heterogeneity and
system drift. This section systematically evaluates four representative algorithms—FedAvg,
FedProx, SCAFFOLD, and FedDyn—by analyzing their convergence mechanisms, performance
metrics (accuracy/communication cost), and real-world applicability based on empirical studies
from 2023–2025.

Federated Averaging (FedAvg): Introduced by McMahan, FedAvg aggregates client updates via
weighted averaging. It achieves 98% accuracy on IID datasets like MNIST but drops to 83% in non-
IID settings due to client drift [1,5]. Its simplicity and low communication cost make it suitable for
homogeneous environments. The core objective of FedAvg is to minimize a global loss function
F(w), which is the weighted average of the local loss functions    for each of the K clients:  

  where     is the number of data samples on client k, and    
is the total number of samples across all clients. FedProx is proposed by Li, FedProx adds a
proximal term to the local objective function to mitigate data heterogeneity [6]. This term penalizes
the deviation of local model weights from the global model, effectively bounding the local updates.
The local objective for client k is formulated as:     Here,     is the

local loss function for client    , w represents the local model parameters,     is the global model
from the previous communication round, and    ≥0 is a hyperparameter that controls the strength of
the proximal term. This approach achieved 90% accuracy in non-IID settings, a 7% improvement
over FedAvg on CIFAR-10 [5]. However, tuning the proximal term μ increases computational
overhead by 10-15% [6].

SCAFFOLD is developed by Karimireddy et al [6]., it uses control variates to correct for "client
drift" in non-IID settings. Each client and the server maintain control variates that estimate the local
and global update directions, respectively. The local update for client      is modified by
incorporating these variates:      In this expression,      is the
learning rate,      is the local gradient,     ​ is the client control variate, and      is the server
control variate. This correction ensures that local updates are better aligned with the global
optimization objective. SCAFFOLD reached 92% accuracy in non-IID settings [5]. It requires 20%
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more communication than FedAvg due to the transmission of control variates [6]. Introduced by
Acar, FedDyn employs dynamic regularization to align the local client objectives with the global
objective, even under significant data heterogeneity [7]. It modifies the local objective by adding a
dynamic regularizer that changes over rounds. The local objective for client k at round t is:  

  where     is a state variable that accumulates past

gradient information for client     ,      is the previous global model, and      is a regularization
parameter. This dynamic term helps to prevent local models from drifting away from the global
solution. FedDyn achieves 91% accuracy in non-IID settings with moderate communication costs
[5]. Its adaptability reduces hyperparameter tuning needs [1]. Follow table 1,Source Data compiled
from [1,4]. FedAvg is effective for IID data but struggles with heterogeneity. Fed-Prox and
SCAFFOLD excel in non-IID settings, with SCAFFOLD offering high accuracy but increased
communication costs. FedDyn balances performance and efficiency, making it suitable for diverse
applications. Combining SCAFFOLD's control variates with FedDyn's dynamic regularization could
optimize accuracy and resource use.

Table 1. Comparison of FL optimization algorithms

Algorithm Accuracy (IID) Accuracy (Non-IID) Communication Rounds Computational Overhead

FedAvg 98% 83% Low (10-15) Low
FedProx 97% 90% Medium (15-20) Medium

SCAFFOLD 96% 92% High (20-25) High
FedDyn 96% 91% Medium (15-20) Medium

4. Evaluation of privacy-preserving techniques

This section evaluates three core techniques for balancing privacy in FL deployments, including
differential privacy, secure aggregation, and homomorphic encryption, and discusses a hybrid
approach for real-world deployment challenges [8]. Secure Aggregation: Encrypts updates,
maintaining accuracy with minimal impact but increasing computational overhead by 30% [9].
Homomorphic Encryption: Enables computations on encrypted data, offering strong privacy but
increasing training time by 50-100% [5]. Differential privacy suits applications needing moderate
privacy, while secure aggregation balances privacy and accuracy. Homomorphic encryption is ideal
for high-security scenarios but impractical for resource-constrained devices [8,9]. As shown in Table
2, the choice of technique depends on the application’s privacy-utility trade-off. For time-sensitive
healthcare, secure aggregation now offers the best balance, whereas financial institutions may still
prefer HE despite its overhead for regulatory compliance. The analysis reveals that secure
aggregation is most practical for high-accuracy applications like medical diagnostics, while
differential privacy is suitable for less critical ones. Homomorphic encryption is currently
impractical due to its resource demands. Future hardware advancements or optimized encryption
protocols could make homomorphic encryption more viable, but hybrid approaches combining
differential privacy and secure aggregation may offer the best balance for real-world FL
deployments.
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Table 2. Comparison of privacy-preserving techniques

Technique Privacy Level Accuracy Impact Computational Overhead

Differential Privacy High Medium (5-10%) Low
Secure Aggregation High Low (<5%) High

Homomorphic Encryption Very High High (10-20%) Very High

Source: Data compiled from [10-12].

5. Communication efficiency

Communication efficiency is critical for FL’ scalability, as frequent model updates impose
significant bandwidth demands. Recent advancements have reduced these costs while preserving
model performance [4,13]. Gradient Compression and Quantization: Techniques like Top-K
sparsification reduce data transmission by up to 95% (via 2024's AutoCompress dynamic tuning),
maintaining accuracy within 2.5–5% of uncompressed methods [12,14]. However, high compression
can degrade performance in non-IID settings [2]. Knowledge Distillation (FedKD): Transfers
knowledge from local mentor models to a smaller mentee model, reducing communication costs by
94.89% (FedKD v2.0 in 2025) with <0.1% accuracy loss on large datasets like MIND [18]. Over-
the-Air Computation: Enables simultaneous update transmission via signal superposition, saving up
to 70% bandwidth in 6∂G-enabled wireless environments (2025 study) with <3% accuracy loss [15].
Adaptive Client Selection: Selects clients based on data quality, reducing unnecessary transmissions
by 60% via 2024’s RL-FedSelect deep Q-learning algorithm [16].

Table 3. Comparison of communication efficiency techniques

Technique Cost Reduction Accuracy Impact Applicability

Gradient Compression High (90%) Medium (2-5%) General
Knowledge Distillation Very High (94.89%) Low (<0.1%) Large Models

Over-the-Air Computation Medium (50%) Low (<5%) Wireless Networks
Adaptive Client Selection Medium (40%) Low (<5%) Heterogeneous Settings

Source: Data compiled from [6,14,17].

Gradient compression is broadly applicable but risks accuracy loss. FedKD excels for large
models, while over-the-air computation suits wireless networks. Adaptive client selection enhances
efficiency in heterogeneous settings [17]. FedKD's cost reduction benefits large-scale FL systems,
but model distillation may limit simpler models. Gradient compression, over-the-air computation,
and adaptive client selection could optimize communication and model quality.

Future research could integrate FedKD with RL-FedSelect to achieve 98% communication cost
reduction in edge FL, as suggested by [17]. 6G-over-the-air computation also shows promise for
real-time applications like autonomous surgery.

6. Applications and case studies

FL, a privacy-preserving technology, has revolutionized healthcare, IoT, and finance by facilitating
multi-institutional medical imaging. However, challenges like data heterogeneity can reduce
accuracy by 5-10% [14]. FL's applications show potential, but require tailored solutions. Techniques
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like domain adaptation, blockchain for COVID-19 prediction, and lightweight secure aggregation
protocols can help mitigate these issues. FL's versatility in various applications underscores its
versatility, but tailored solutions are needed to overcome domain-specific challenges.

7. Conclusion

Federated learning (FL) has made significant progress from 2023 to 2025, with algorithms like
FedProx and SCAFFOLD improving non-IID performance and reducing costs. However, challenges
like data heterogeneity and security threats persist. Future research should focus on scalable,
interpretable solutions to solidify FL's role in privacy-preserving AI. Personalized FL could enhance
model relevance, but its complexity may limit adoption. Quantum FL is promising but currently
impractical due to technological constraints. Addressing data heterogeneity through adaptive
algorithms and explainable AI techniques is critical for FL's future. Blockchain integration could
enhance trust in decentralized systems, but computational demands need optimization.
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