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Chain-of-Thought (CoT) reasoning enhances the performance of large language
models (LLMs) on complex tasks such as solving mathematical problems, logical inference,
and question answering by guiding models to generate intermediate reasoning steps rather
than directly producing final answers. This approach simulates human-like, step-by-step
thinking, significantly improving the stability and accuracy of the reasoning process. By
moving beyond the “black box" nature of traditional LLM outputs, CoT also lays the
foundation for more controllable and multimodal reasoning. However, most existing
research has focused on unimodal (text-only) CoT, leaving the multimodal setting
underexplored. Multimodal CoT (MMCoT) addresses this gap by separating rationale
generation and answer inference through a two-stage architecture that integrates visual and
textual inputs. However, due to the limited semantic richness of visual features extracted by
the Vision Transformer (ViT), its performance remains suboptimal. In this work, we propose
C-MMCoT, a model that leverages CLIP-extracted visual features to generate rationales,
thereby enhancing the semantic alignment of visual reasoning. Experiments on the
ScienceQA test set demonstrate that C-MMCoT outperforms baseline models. Compared to
GPT-4, it achieves higher accuracy on key categories such as SOC, TXT, and IMG,
culminating in an overall accuracy that is 0.57 percentage points higher.
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In recent years, large language models (LLMs) [1-4] have demonstrated remarkable capabilities
across various natural language processing (NLP) tasks. However, they still face limitations in
complex reasoning scenarios [5]. Chain-of-Thought (CoT) [5] reasoning enhances model
performance by decomposing a problem into a sequence of intermediate steps, mimicking the
human thought process when solving complex tasks. While CoT improves reasoning ability, current
research predominantly focuses on unimodal text, which is insufficient for real-world tasks
involving intertwined multimodal information [6].

Multimodal reasoning requires integrating different modalities (e.g., images and text) and
presents greater challenges than unimodal settings in terms of cross-modal inference, feature
extraction, and rationale generation. To address this limitation, the Multimodal Chain-of-Thought
(MMCoT) [6] introduces visual information into the CoT framework through a two-stage
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architecture that separates rationale generation from answer prediction. This approach effectively
fuses visual and textual features, improving model accuracy and robustness. MMCoT employs
Vision Transformer (ViT) [7] for visual encoding. Although ViT excels at extracting discriminative
image features, it may lack semantic richness and alignment with language due to limitations in
training objectives.

Contrastive Language—Image Pre-training (CLIP) [8], trained on large-scale image—text pairs via
contrastive learning, produces semantically rich visual representations that are well aligned with
natural language. CLIP features are better at capturing the overall concept and core semantics of an
image and exhibit stronger generalisation. To address the semantic shortcomings of ViT-based visual
features, we propose C-MMCoT, which utilises CLIP to extract visual features for rationale
generation, thereby improving reasoning quality and overall model performance.

2. Related work
2.1. Development of Chain-of-Thought reasoning

With the rise of large language models, Chain-of-Thought (CoT) has become a common strategy for
enhancing complex problem-solving. Early work like Auto-CoT [9] introduced the idea of guiding
models via reasoning chains. Later approaches, such as SC-CoT [10] used majority voting over
multiple chains, while Tree-of-Thoughts (ToT) [11] explored path-searching to improve reasoning
accuracy. However, CoT quality depends heavily on model scale. In smaller models, reasoning
chains are often redundant or incoherent [12]. As task diversity grows, relying solely on textual
input 1s no longer sufficient for stable and generalizable reasoning.

2.2. Evolution of multimodal reasoning frameworks

To enhance model comprehension, recent research has explored integrating visual information into
the reasoning process via multimodal CoT [6,13]. A representative work, MMCoT [6], introduced a
two-stage architecture that first generates a rationale and then an answer, enabling visual input to
participate in reasoning and improving both interpretability and accuracy. Zheng et al. proposed
DDCoT [4], which separates visual recognition into an expert module via role-specific prompting
and uses negative-space prompting to let the language model identify uncertain regions that trigger
external visual tools. ICoT [14] attempts to jointly generate answers and reasoning in a single step
using interleaved image-text chains but lacks explicit control over reasoning quality. In contrast,
agent-based systems such as MM-REACT [15] focus more on interaction and tool usage rather than
static question answering. This work builds upon the open and representative MMCoT framework,
emphasising the relationship between rationale quality and visual features.

3. Methodology
3.1. Overall framework

Our work builds on the Multimodal Chain-of-Thought (MMCoT) framework [6], which adopts a
two-stage approach: Stage One generates a textual rationale from the question, options, context, and
visual input; Stage Two infers the final answer using the rationale and original inputs.
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Figure 1. Overall framework of C-MMCoT

Notably, we employ CLIP [8] to generate rationales from image features. Since CLIP embeddings
are semantically aligned with language, the model can more effectively associate visual content with
contextual and reasoning information. As a result, the generated rationales are more likely to capture
key visual cues relevant to the question, rather than merely describing surface-level objects.
Moreover, CLIP demonstrates stronger performance in vision-language alignment and abstract
relational reasoning. Its representations encode high-level semantic concepts, enabling rationale
generation to focus more on abstract reasoning and logical connections beyond low-level pattern
recognition.

3.2. Backbone language model

In both stages, we adopt a model based on the TS5 encoder-decoder architecture [16] as the
backbone. Specifically, we initialise weights from the publicly available declare-lab/flan-alpaca-base
model on Hugging Face Hub [17], which is an instruction-tuned variant of FLAN-TS with 223M
parameters. To incorporate visual information, we wrap the base TS5 model into a multimodal
generation framework (TS5ForMultimodalGeneration), centred around a JointEncoder structure
designed to fuse visual and textual modalities.

3.3. Visual feature extraction and processing

We adopt CLIP [8] as the visual feature extractor. Following MMCoT [6], we use patch-level image
features encoded by the CLIP model with a ResNet-101 (RN101) [18] backbone, resulting in a
feature tensor of shape [49, 2048], where each image is represented by 49 patches, each encoded as
a 2048-dimensional vector.

In the T5ForMultimodalGeneration model, visual features are first passed through a learnable
projection layer to match the embedding space of the language model. The projected visual
embeddings are then input into the encoder alongside text embeddings.Within the JointEncoder
module, visual features are first projected to the hidden dimension of TS5 via image dense. A
multimodal attention mechanism (mha layer) then uses text hidden states as queries, and the
projected visual features as keys and values, to aggregate visual information. Finally, a gating
mechanism (gate_dense with sigmoid activation) combines text and visual representations via
weighted fusion, constructing the final multimodal representation.
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4. Experiments
4.1. Dataset

We evaluate our model using the ScienceQA benchmark [19], which comprises 21,208 multiple-
choice, multimodal questions. The dataset covers diverse domains including natural science,
language science, and social science, spanning 26 topics, 127 categories, and 379 distinct
skills.ScienceQA is split into 12,726 training samples, 4,241 validation samples, and 4,241 test
samples.

4.2. Baseline

We compare C-MMCoT with several representative baselines on the ScienceQA dataset, grouped
into three categories:(1) Standard visual question answering (VQA) models, including MCAN [20],
BAN [21], DFAF [22], ViLT [23], Patch-TRM [24], and VisualBERT [25];(i1)) Language models
(LMs), including UnifiedQA [26] (text-to-text), GPT-3.5, ChatGPT, and GPT-4 [27];(iii) Fine-tuned
large language models, represented by LLaMA-Adapter [28].

4.3. Implementation details

We follow the MMCoT framework [6] and adopt a TS5 encoder-decoder architecture [16], with
weights initialised from declare-lab/flan-alpaca-base [17], a public 223M-parameter FLAN-Alpaca
model on Hugging Face. Training is conducted on a single NVIDIA RTX 4060 Laptop GPU (8GB)
for 15 epochs with a learning rate of Se-5.

4.4. Results

Table 1 reports the accuracy of final answer generation in Stage Two. Overall, C-MMCoT achieves
the best performance across multiple categories. It ranks first on questions involving SOC, TXT,
IMG, and G7-12, and second on NAT, NO, and G1-6. The overall accuracy reaches 84.56%, the
highest among all models.

Compared to the best-performing VQA model VisualBERT [25], C-MMCoT improves accuracy
by 25.44% (NAT), 16.87% (SOC), 21.73% (LAN), 20.53% (TXT), 17.55% (IMG), 27.73% (NO),
21.77% (G1-6), 24.33% (G7-12), and 22.69% on average.Compared to the best LLM, GPT-4 [27],
our model underperforms on NAT, LAN, NO, and G1-6, but achieves gains of 13.61% (SOC),
0.59% (TXT), 8.23% (IMG), 5.21% (G7-12), and 0.57% overall.

Against the best fine-tuned LLM, LLaMA-Adapter (T) [28], C-MMCoT shows improvements of
5.77% (NAT), 12.26% (SOC), 2.36% (LAN), 4.91% (TXT), 9.37% (IMG), 3.13% (NO), 4.96%
(G1-6), 8.57% (G7-12), and 6.25% on average.Although C-MMCoT has 223M parameters -larger
than typical VQA models-it significantly outperforms them. Compared to high-parameter LLMs like
GPT-3.5, ChatGPT, and GPT-4, C-MMCoT achieves superior results on most evaluation metrics.
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Table 1. Main results (%) on ScienceQA test set. Classes: NAT =natural science, SOC = social
science, LAN = language science, TXT = text context, IMG = image context, NO = no context, G1-
6 = grades 1-6, G7-12 = grades 7-12. Bolded red indicates the highest accuracy; blue indicates the
second-best

Model Sizez NAT SOC LAN TXT IMG NO Gl-6 G7-12 AVG
MCAN [20] 95M  56.08 46.23 58.09 5943 51.17 5540 51.65 59.72 54.54
BAN [21] 112M  60.88 46.57 66.64 62.61 52.60 6551 56.83 63.94 59.37
DFAF [22] 74M  64.03 48.82 63.55 65.88 5449 64.11 57.12 67.17 60.72
VILT [23] 113M 60.48 63.89 60.27 6320 61.38 57.00 60.72 6190 61.14
Patch-TRM [24] 90M  65.19 46.79 6555 6696 5528 6495 58.04 6750 61.42
VisualBERT [25] I1IM 5933 69.18 61.18 6271 62.17 5854 6296 5992 61.87
UnifiedQA [26] 223M  71.00 76.04 7891 6642 66.53 81.81 77.06 68.82 74.11
GPT-3.5 [19] 173B 77.71 68.73 80.18 75.12 67.92 81.81 80.58 69.08 76.47
ChatGPT [27] - 78.82 7098 83.18 7737 6792 86.13 80.72 74.03 78.31
GPT-4 [27] - 8548 7244 90.27 82.65 71.49 9289 86.66 79.04 83.99
LLaMA-Adapter (T) [28] 6B 79.00 73.79 80.55 7830 70.35 83.14 79.77 75.68 78.31
C-MMCoT 223M  84.77 86.05 8291 8324 79.72 86.27 84.73 8425 84.56

5. Conclusion

To address the limited semantic richness of visual features extracted by ViT in MMCoT, we
proposed C-MMCoT, a two-stage framework that separates rationale generation from final answer
inference. By leveraging CLIP to generate semantically aligned visual features, our model enhances
visual reasoning quality. Experiments on the ScienceQA test set show that C-MMCoT outperforms
the best VQA model (VisualBERT), the top LLM (GPT-4), and the strongest fine-tuned LLM
(LLaMA-Adapter), with average accuracy gains of 22.69%, 0.57%, and 6.25%, respectively.

Notably, our experiments suggest that the ROUGE scores of generated rationales do not always
positively correlate with their downstream contribution to answer accuracy. This finding highlights
the limitations of text-similarity-based metrics in evaluating the logical soundness of reasoning
chains. Future work may explore new evaluation paradigms that directly assess the logical
coherence of the reasoning process.
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