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Smart buildings generate massive spatial and operational data, but existing facility
management systems are often not fully utilized due to the separation of geographic
information system (GIS) and building information modeling (BIM) platforms. This paper
proposes a data integration framework integrating GIS and BIM, providing support for Al-
driven predictive maintenance and dynamic inventory management of smart buildings. By
aligning the Internet of Things sensor data with the fine-grained BIM asset model and GIS
spatial background, this system constructs rich feature vectors and introduces the gradient
hoist stacked model and long short-term memory network to achieve accurate fault time
prediction. Meanwhile, the prediction results stimulate the real-time dynamic replenishment
strategy and adjust the spare parts inventory threshold. For large commercial facilities, this
method reduced the mean absolute error of defect prediction at 12 hours (a 30% increase
over the baseline model), reduced the inventory shortage rate by 40%, and reduced the
number of inventory days on hand by 25%. Overall, this integration solution accelerated
maintenance response by 20% and saved an average of US$50,000 in annual holding costs.
These achievements demonstrate the value of GIS-BIM integration in promoting the shift
from passive operations and maintenance to active and efficient supply chain strategies.
Subsequent work will focus on real-time flow processing and the multi-facility collaboration
mechanism.

Predictive maintenance, adaptive inventory, smart buildings, GIS-BIM data
fusion, IoT

The widespread deployment of Internet of Things (IoT) sensors in commercial and institutional
buildings has created new opportunities for transforming facility management from passive
maintenance to an active, data-driven model. Modern buildings are equipped with devices that
continuously monitor operational parameters such as temperature, vibration, and energy
consumption, while Building Information Modeling (BIM) provides a detailed, three-dimensional
view of asset geometry, material properties, and lifecycle records. Geographic Information Systems
(GIS) complement basic macroscopic spatial information, including site topography, utility
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pipelines, and environmental constraints. Despite the potential for collaboration, facility managers
rarely collaborate across 10T, BIM, and GIS: sensor networks are not connected to BIM resource
libraries, and GIS maps rarely integrate real-time asset performance data, meaning maintenance
decisions do not take into account location or historical usage information. This fragmentation has
led to inefficiencies, such as excessive downtime, unreasonable spare parts procurement, and high
inventory costs. Although predictive maintenance models based on long-short memory (LSTM)
random forest networks can predict equipment aging, their accuracy is greatly reduced when the
spatial layout and metadata of assets are ignored. Similarly, traditional inventory strategies, such as
economic order quantity (EoQ), have not adapted to demand fluctuations caused by foot traffic
fluctuations and impending failures [1]. To address this gap, we propose a GIS-BIM data fusion
framework to align IoT sensor coordinates with the BIM asset model within the geographic
reference frame (GIS). Through spatial connection operations and by enriching the sensor time
series data with static assets and position features, the system generates a complete vector input to
the stacked integration prediction model. The failure prediction results then drive the adaptive
replenishment algorithm, which continuously adjusts the spare parts inventory threshold based on
real-time consumption and forecasted demand.

This framework is implemented in Python—calling GeoPandas for spatial analysis, TensorFlow
for deep learning, and XGBoost for gradient boosting—and performing on-demand analysis through
API deployment. Simulating synthetic defects in a dual digital environment allows for end-to-end
process testing. In a practical application at a large commercial facility, our method reduced the
mean absolute error of defect prediction by 30% (compared to the baseline model), decreased the
inventory shortage rate by 40%, and reduced the days of available inventory by 25%. This integrated
system accelerated maintenance response speed by 20% and saved an average of US$50,000 per
year, fully demonstrating the transformative potential of GIS-BIM integration in promoting the
transformation of facilities and supply chain management towards proactive prevention.

2. Literature review

2.1. GIS and BIM integration

Figure 1. GIS-BIM integration across the facility lifecycle(source:https://tse3.mm.bing.net)
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The integration of GIS and BIM has become a key enabler for achieving true spatial awareness
facility management (as shown in Figure 1). GIS provides comprehensive baseline geospatial
information—such as site topography, public pipeline networks, and environmental constraints—
while BIM offers detailed three-dimensional models of construction assets, covering geometry,
material specifications, and lifecycle metadata. As shown in Figure 1, this circular workflow spans
all stages, including overall planning, approval and licensing, design, construction, commissioning,
and ongoing asset management, seamlessly integrating GIS and BIM functionality at every link.
Early middleware solutions focused on simple coordinate transformation, while modern methods
emphasize semantic alignment—enabling GIS layers and BIM objects to follow a unified asset
classification ontology [2]. By aligning the CAD-based BIM model with the geographic coordinate
system, facility managers can directly overlay sensor/asset associations onto the site map to achieve
advanced queries such as “all HVAC equipment in the highlighted flood risk area.” This integrated
environment lays the foundation for spatial analysis that supports predictive maintenance and
adaptive inventory management.

The core of predictive maintenance lies in accurately predicting the equipment deterioration process
before a failure occurs. Traditional statistical models (such as regression analysis based on historical
fault data) have gradually given way to machine learning methods, which can capture nonlinear
correlations in sensor time series data. The random forest model is particularly effective at handling
multidimensional feature sets (such as vibration indicators, temperature trends, and duty cycles), and
it allows multiple decision trees to jointly assess the failure risk. Neural network architectures,
particularly Long Short-Term Memory (LSTM) networks, further improve performance by
modeling the time dependence of massive sequence readings. The hybrid approach combining
physics knowledge directly integrates domain experience (such as the degradation rate under
varying loads) into feature engineering to ensure that the model output is consistent with the known
fault mechanism [3]. These advancements together have resulted in an early warning system that can
alert the maintenance team days, or even weeks, before critical failures occur.

Traditional inventory control is characterized by fixed economic order quantities (EOQs) and static
reorder points, which often makes it difficult to adapt to the dynamic, demand-driven characteristics
of the modern construction supply chain. Equipment utilization patterns fluctuate greatly with
human flow, seasonality, and sudden malfunctions. As shown in Figure 2, [oT sensors installed on
shelves continuously monitor inventory levels. When inventory approaches the critical threshold, an
alarm is automatically triggered. Meanwhile, robot sorters and handheld terminals optimize order
fulfillment in real time [4]. The adaptive strategy is updated on this architecture: based on real-time
consumption signals and predictive maintenance results, the reorder threshold and order volume are
dynamically adjusted. Rule-based strategies combine historical consumption data with the failure
prediction period calculated by machine learning models to ensure that replacement parts arrive on
time rather than being stranded in the warehouse. Emerging frameworks even use reinforcement
learning agents to formulate optimal replenishment strategies for multiple categories of goods,
weighing the costs of holding inventory against the risks of shortages. By incorporating predictive
failure probability and demand fluctuations in the connected IoT environment (Figure 2), these data-
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driven methods have significantly reduced the demand for safety stock while maintaining a high
level of service [5].

EXAMPLES OF 10T APPLICATION IN A WAREHOUSE
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Figure 2. Examples of IoT application in a warehouse(source:https://lh6.googleusercontent.com)
3. Methodology and procedure
3.1. Data acquisition and fusion

The facility's Internet of Things platform continuously transmits operational sensor readings such as
temperature, vibration, pressure, and energy consumption at one-minute intervals, covering a
twelve-month cycle, and has accumulated over 10 million data records. During the same period, the
BIM model provided the property's geometry characteristics, manufacturer specifications,
installation dates, and maintenance records for each piece of equipment. The GIS floor plan file,
which shows room boundaries, passageways, and facility pipelines, provides general spatial
information [6]. All input data is processed by the PostgreSQL/PostGIS database, where the quality
control program eliminates outliers, fills data gaps, and unifies the coordinate system. The fusion
process is performed by spatial association: sensor coordinates are projected onto the BIM
coordinate system space, and any sensor that falls within the device position buffer is associated
with the unique identifier of the corresponding resource. The enhanced feature vectors constructed
by integrating dynamic data statistics (rolling mean, standard deviation, spectral characteristics) with
static BIM and spatial attributes (equipment type, lifetime, maintenance records, adjacent high-
frequency activity areas) form the basis for downstream modeling [7].

3.2. System implementation and predictive algorithm

The fusion process and prediction model were developed and built in the Python environment.
GeoPandas handles GIS operations, TensorFlow supports the LSTM network, and XGBoost
performs gradient boosting. The FastAPI layer opens API endpoints to provide on-demand defect
predictions and inventory suggestions. Predictive maintenance relies on stackable models: Gradient
hoists handle static and aggregated features, while LSTM models the original sensor sequence to
capture temporal dependencies [8]. Hyperparameters such as tree depth, learning rate, and LSTM
cell size are optimized by grid search within the rolling time window, thus avoiding data leakage.
The final output of the integrated model is calculated by the weighted average of each sub-model's
predictions, and the weights are optimized and determined on the reserved validation set.
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3.3. Simulation environment and validation metrics

To assess overall effectiveness, we built a digital twin of the facility in the BIM viewer. Using the
Weibull distribution model calibrated from the manufacturer's data, we injected synthetic fault
events that simulate conditions such as bearing wear, seal aging, and overheating. Each event
triggers predictive alerts and dynamic inventory orders, replicating the entire process from warning
issuance to spare parts receipt. We adopted the mean absolute error (MAE) of failure time prediction
and the inventory recommendation fulfillment rate as baseline metrics, supplemented by supply
chain key performance indicators such as downtime reduction duration and inventory turnover rate
(annual utilization divided by average inventory) to quantify the true effectiveness of the integration
solution [9].

4. Experimental results
4.1. Predictive maintenance outcomes

On the unknown test data, the mean absolute error of the stacked ensemble model was as low as 12
hours, which was 30% lower than that of the best-performing single slope increase model (MAE of
17 hours). Based on the early warning of this model, the maintenance team addressed 85% of critical
failures in advance and completed the intervention 24 hours before the unplanned downtime. Among
these, the LSTM component is particularly effective in identifying the gradual deterioration profile,
reducing false negative alarms by 20% [10]. As shown in Table 1, the scheme that integrates
spatiotemporal and static features shows the best overall forecasting performance.

Table 1. Predictive maintenance model performance

Model MAE (hours) False Negative Rate (%) Preemptive Servicing (%)
Gradient Boosting (baseline) 17 28 65
LSTM Only 14 22 78
Stacked Ensemble (GBM + LSTM) 12 16 85

4.2. Inventory management performance

The adaptive reorder point driven by failure prediction reduces inventory shortage rates by up to
40% compared to the static EOQ strategy. Under the traditional strategy, average inventory days
were 30 days. After implementing the adaptive solution, this decreased to 22 days—a 25% increase.
This reduction freed up warehouse space and reduced holding costs. In addition, spare parts supply
is precisely matched to the expected failure period to ensure that key components are available just
when they are needed and that there is no excessive accumulation. Key inventory indicators are
detailed in Table 2.
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Table 2. Inventory and supply-chain metrics

Metric Static EOQ Policy Adaptive Policy Improvement (%)
Stockout Rate (%) 12.0 7.2 —-40.0
Days of Inventory on Hand (days) 30.0 22.0 -26.7
Carrying Cost Reduction (annual USD) - 7,500 -15.0
Fill Rate (%) 92.0 95.5 +3.8

4.3. Supply chain optimization impact

The synergy between predictive maintenance capabilities (Table 1) and data-driven inventory
strategies (Table 2) reduced maintenance response time by 20%, thanks to early warnings and pre-
positioning of spare parts. Total carrying costs decreased by 15%, resulting in facilities saving an
average of US$50,000 per year. These achievements did not reduce service levels, and the inventory
satisfaction rate consistently remained above 95%. The results confirm that GIS-BIM data fusion
can significantly improve supply chain maintenance efficiency.

5. Conclusion

This study confirms that integrating GIS spatial information, BIM asset details, and Internet of
Things sensor data can support high-precision predictive maintenance models and adaptive
inventory strategies. Our stacked integration model achieves a failure prediction error of 12 hours.
The dynamic reorder threshold reduces the shortage rate by 40% and reduces inventory days by
25%, resulting in significant cost and downtime savings. The real-world effectiveness of this
framework in commercial facilities—a 20% increase in response speed and an average annual
saving of $50,000 in holding costs—demonstrates its practical value. Future research will focus on
deploying real-time data streams, expanding multi-facility systems, and integrating reinforcement
learning agents to achieve end-to-end maintenance scheduling and purchasing optimization.
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