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Abstract. In recent years, advancements in robotics have significantly heightened interest in
robotic arm grasping, a critical capability for intelligent robotic systems. Nevertheless,
achieving autonomous and precise grasping remains a formidable challenge. Despite
extensive research exploring diverse neural network architectures integrated with deep
learning for robotic grasping, the achieved accuracy levels frequently fail to meet practical
requirements. This study proposes a novel Unet-DGN-L2 neural network architecture,
which employs the Unet framework as the primary mechanism for feature extraction while
integrating a decoupled grasping network to generate pixel-wise grasping representations.
To address the issue of overfitting, L2 regularization is incorporated, resulting in a robust
model for predicting grasping poses. Evaluated on the Cornell dataset, the proposed Unet-
DGN-L2 architecture achieves a grasping accuracy of 86%, demonstrating substantial
improvements in autonomous and precise object grasping. This advancement enhances the
applicability of intelligent robots in real-world scenarios, particularly in fields such as
industrial automation, thereby contributing to the progression of robotic manipulation
technologies.
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1.  Introduction

With the rapid advancement of artificial intelligence (AI) technology, the automation and
intelligence of robots are also advancing at an unprecedented pace, gradually enabling robots to
independently accomplish tasks. While robots have already been deployed in factories, hotels,
restaurants, and other settings, significantly enhancing operational efficiency and reducing labor
costs, their mechanical structures' lack of flexibility and technological limitations currently prevent
them from fully replacing humans in task execution. Achieving autonomous and precise grasping
capabilities for robotic arms is a critical prerequisite for enabling independent task completion by
robots. This capability not only facilitates intelligent picking and sorting operations but also
promotes human-robot collaboration, eldercare services, and domestic assistance. Furthermore, it
empowers robots to assist humans in hazardous environments such as fire scenes and earthquake
zones, thereby enhancing safety.

The conventional method of pre-programming a mechanical arm's grasping path using fixed
parameters lacks robustness and flexibility. Consequently, achieving precise and autonomous rapid
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grasping in unstructured environments is highly significant for the widespread application of robots
and represents an essential function of intelligent robots. To realize this capability, it is necessary for
the robot to perform pose recognition of the target object, determine specific parameters such as the
grasping point, angle, and width of the gripper, and conduct path planning for the grasping process.
Currently, research on autonomous grasping by mechanical arms predominantly focuses on
integrating deep learning techniques with robotic manipulation. Autonomous and precise grasping is
a critical prerequisite for enabling robots to independently complete tasks. This capability not only
facilitates intelligent picking and sorting operations, thereby promoting the use of robots in human-
robot interaction, elderly care, and domestic services, but also assists humans in executing tasks in
hazardous environments, such as fire scenes or earthquake zones, thus enhancing safety [1].
pioneered the application of deep learning to address the robotic grasping problem in RGB-D views.
The authors employed a two-stage cascaded system comprising two deep neural networks to
enhance model performance. Grasping success rates of 84% and 89% were respectively achieved in
experimental validations [2]. trained a fully connected network using RGB images of objects,
achieving success rates of 79% and 74% on the training set and test set, respectively. However, the
grasping accuracy exhibited certain limitations [3]. introduced the GG-CNN model, which
significantly accelerated pose acquisition. Nevertheless, this model heavily relies on large-scale
standardized labeled data, thereby limiting the optimization efficiency of the neural network [4].
employed GQCNN 4.0, GG-CNN, and its variants as expert models to construct an ensemble model,
achieving a 6% improvement in accuracy on the Cornell dataset [5]. proposed a target grasping
method that integrates the YOLO algorithm with the Soft Actor-Critic (SAC) algorithm. By
incorporating incremental learning and transfer learning, they enhanced the efficiency of the
proposed method. Currently, numerous algorithms and models have been improved based on the
GG-CNN model. In this study, the Unet-DGN-L2 model was utilized for robotic arm autonomous
grasping, effectively reducing computational complexity. Compared with the GG-CNN model on
the public Cornell dataset, the accuracy increased by 17%, achieving a balance between lightweight
design and high accuracy.

The primary focus of this research is the integration of a visual robot grasping target object pose
estimation algorithm based on the Unet-DGN-L2 model. This encompasses the overall procedure
and framework for visual robot grasping, the theoretical foundations of mechanical arm grasping
combined with deep learning, enhancements to the UNet network, and experiments performed on
the Cornell dataset. The study is organized into the following six sections: (1) The first section
reviews the current mainstream methodologies for mechanical arm grasping in conjunction with
deep learning, evaluates their strengths and limitations, and outlines the research direction of this
paper. (2) The second section discusses prior work related to robot grasping, detailing the primary
research directions in this field and providing an overview of the development of the Unet model.
(3) The third section addresses the challenges that need to be resolved in robot grasping. (4) The
fourth section presents a comprehensive description of the model architecture. (5) The fifth section
analyzes and summarizes the experimental outcomes of the Unet-DGN-L2 model on the Cornell
dataset. (6) The final section provides a concise summary of the overall research.

2.  Related work

Machine grasping, as a critical subfield within robotics, has been the subject of extensive research.
This article specifically focuses on the pose estimation of robotic arms in conjunction with deep
learning methodologies. For a more comprehensive understanding of this domain, readers are
encouraged to consult relevant reviews and scholarly articles [6,7]. In recent years, there has been a
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significant amount of research on robotic arm grasping combined with deep learning, and in terms
of application scenarios, [8] proposed an algorithm for learning the probabilistic model of object
geometry generation. In the scenario where the object is occluding, this model can identify the
object based on the visible part of each object's contour, and then estimate the complete geometric
shape of the object for grasping planning [9]. proposed a novel robot grasping pose prediction
method Real-time Grasping Network (RGN). Taking KPConv as the backbone network, the
prediction accuracy in complex scenarios is significantly improvedIn terms of grasping accuracy
[10], used the RGB-D images of the scene to predict the optimal grasping posture. This model uses a
deep convolutional neural network to extract features from the scene, and then uses a shallow
convolutional neural network to predict the grasping configuration of the object of interest. It
achieves an accuracy rate of 89.21% on the Cornell dataset, but the number of parameters is too
large.

The Unet model can exhibit high accuracy with very few input training images. With its
outstanding performance, Unet and the improved models based on it have been widely used in the
medical field and achieved very good results [11].first proposed the Unet model and won the ISBI
competition with a significant advantage by using this model [12]. proposed a neural network RIC-
Unet (Residue-Inception-Channel attention-Unet) based on Unet for kernel segmentation.
Techniques such as residual blocks, multi-scale and channel attention mechanisms are applied on
RIC-Unet to segment the cores more accurately. This model achieved the third place in the
Computational Precision Medicine Nuclear Segmentation Challenge.

3.  Problem statement

During the grasping task of the robotic arm, the pose data of the grasped object must be obtained
first. In this paper, the parallel gripper in the robotic arm is studied and represented using the
following formula in the robot's basic coordinate system：

(1)

where     is the center position of the end actuator of the parallel gripper,     is the
Angle of rotation of the gripper around the 𝑧 axis，    is the width required by the gripper. For an
N-channel image with a height of H and a width of W,    ，The pose parameters for its
capture in the image frame are shown in Figure 1. At this time, the pose data for capture is
represented by the following formula:

(2)

where    represents the filter,    represents the coordinates of the grasping center
point in the image coordinate system,      represents the rotational grasping Angle in the camera
coordinate system. To overcome the periodicity problem and training difficulty brought by the direct
regression Angle, the Angle is encoded as two components of the unit vector,    and the   .
Eventually scraping Angle by theta     , the fetching      said objectives

width parameter [13]. In this study, our task is to find the optimal grasping parameters among all the
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grasping pose configurations of the image frame. Thus, by using the mutual transformation of the
coordinates in the robot's base coordinate system, the camera coordinate system, and the image
frame coordinates, the optimal grasping parameters in the robot's base coordinate system can be
obtained, and the grasping action can finally be completed.

Figure 1. Schematic diagram of the grasping configuration of the parallel gripper

4.  Methodology

4.1. Theoretical basis

The neuron layer of CNN’s (Convolutional Neural Network) network architecture consists of 3D -
structured neurons with input spatial dimensions and a depth dimension. After receiving input, each
neuron conducts linear transformation (e.g., scalar product) and nonlinear activation mapping. The
network represents an end - to - end perception function parameterized by weights, with a category -
related loss function at the network's end layer [14].

GGCNN(Generative Grasping Convolutional Neural Network) algorithm is a deep neural
network model used to generate the grasping pose of a robotic arm. When predicting the grasping
pose, the first step is to perform feature extraction and feature fusion on the input depth map to
generate a probability map. Then, the grasping pose with the highest grasping probability is selected
from the probability map for grasping. Specifically, the network of GGCNN consists of an input
layer, a convolutional layer, a pooling layer and a fully connected layer. Among them, the
convolutional layer learns the features of the input image, the fully connected layer classifies and
regresses the features, and finally outputs the grasping pose information [15].

The convolutional layer is the core component of Unet and GG-CNN. The convolution operation
calculates the dot product between the filter and the local area of the input by sliding the filter (also
known as the convolution kernel) over the input data. This way, the spatial local features in the input
data, such as edges and textures, can be captured [16], The expression of its convolution operation
is:
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(3)

where     represents the output of the first layer,     represents the output of the i-th channel of
layer l-1,     represents the c-th channel of layer l-1,    and    represent weights and biases
respectively.

Another key layer is the Pooling layer. During the operation, it down-samples the input features
to extract the features of the image. It uses several statistical functions to obtain the content on each
window. There are two common pooling techniques: maximum pooling and average pooling [9]，
As shown in Fig. 2, max pooling selects the max value in the pooling area as output, retaining the
most prominent features in the feature map and performing well in edge - area processing. Average
pooling uses the mean function to smooth global content and reduce noise interference. This paper
employs max pooling. The formula of the Max pooling layer is:

(4)

Figure 2. Two pooling methods

In this paper, the loss function adopted is the Mean Squared Error Loss function. It calculates the
average value of the square of the difference between the predicted value and the true value. Since
the error is squared, the output value is sensitive to large errors. Its mathematical expression is as
follows:

(5)

Regularization techniques are often employed to prevent overfitting. Overfitting refers to the
situation where a model overfits the training data, resulting in poor performance on new samples [9].
Regularization penalizes the complexity of the model by adding a regularization term to the loss
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function of the model. The addition of the regularization term and the loss function of the model will
form a new objective function, and a better model can be obtained by minimizing this objective
function. Its mathematical expression form is:

(6)

where    ,     are the training samples and the corresponding labels.     is the weight coefficient
vector.     is the objective function.    is the penalty item. Parameter     controls the strength of
regularization. There are two commonly used Ω functions, the L1 regularization and L2
regularization [17]. research shows that L1 regularization brings performance improvement in the
case of a small number of kernel functions, but leads to performance degradation in the case of large
scale. However, L2 regularization does not reduce performance. Instead, it achieves significant
performance improvement in the case of a large number of kernel functions. This paper adopts the
L2 regularization technique to reduce the overfitting risk of the model.

L2 regularization imposes constraints on the model parameters by introducing the square of the
L2 norm of the weight parameters in the loss function as the penalty term. The formula is:

(7)

This regularization method helps prevent the model from overly relying on a few features or
specific training samples. When there is no specific feature selection, It often performs exceptionally
well, allowing all features to contribute to the model's prediction and thereby enhancing the model's
generalization ability [16].

4.2. Dataset description

This paper adopts the Cornell dataset to verify the performance of the algorithm. At present, most of
the papers on the grasping direction of robotic arms combined with deep learning are verified and
evaluated using the Cornell dataset. Obviously, the adoption of this dataset is scientific. The Cornell
dataset collects real-world scene data with the help of cameras, covering 240 categories of target
objects. There are certain limitations on the target categories and quantities included in this dataset,
which consists of 885 RGB images and an equal number of depth images. Each image is equipped
with corresponding positive and negative capture labels, among which there are a total of 5,110
positive capture labels and 2,909 negative capture labels. Furthermore, the dataset provides the
corresponding point cloud files for generating the corresponding depth images. As shown in Figure
3, some samples of the Cornell dataset are presented.

J̃ (ω; X, y) = J (ω; X, y) + αΩ (ω)

X y ω

J  Ω (ω) α

Ω(ω) = ω
2
2 = ∑ iω2
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Figure 3. Several samples from the cornell dataset

4.3. The proposed model

In this paper, aiming at the limitations of the pose estimation accuracy of visual robots in grasping
target objects, the advantages of Unet, DGQN and L2 regularization are combined, thus the UNet-
DGN-L2 model is proposed, for autonomous grasping of robotic arms. The Cornell dataset is
adopted to prove the feasibility and effectiveness of this model, and its structure diagram is shown in
Figure 4. Firstly, the input RGB-D image is processed by the Unet model. In the encoding stage,
three downsampling operations are performed successively. Each downsampling includes
convolution, normalization, and pooling processing. The convolution kernels used in the
convolution operation are all 3×3. After each normalization processing, a linear correction unit
ReLU is connected. Due to the use of filling processing, the size of the feature map remains
unchanged before the downsampling pooling. The pooling window size and step size are both 2, so
the feature map size is halved after the pooling operation. In the intermediate stage of encoding and
decoding, three convolution, normalization and pooling processes are performed to further extract
features. The convolution kernel used is also 3×3, and the size of the feature map remains
unchanged in this stage. In the decoding stage, three up-sampling operations are performed
successively. Each up-sampling includes deconvolution, convolution, and normalization processing.
The convolution kernel used in the deconvolution operation is 3×3, which doubles the size of the
input feature map. Convolution and normalization processing do not change the size of the feature
map. After the Unet model is the DGN model, which drew on the literature’s DGQN module
structure [13]. Combining the local field of view captured by the upper path of the DGN module
with the global field of view captured by the lower path is more conducive to feature extraction by
the model. Different from this, the DGN module here does not adopt the DWC lightweight grabbing
network. In the final adjust layer after the DGN module, 3×3 convolution kernels are used for
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convolution and normalization processing, followed by the activation function ReLU. Finally, up-
sampling is carried out through the bilinear interpolation algorithm to restore to the input image size.
Finally, the feature vectors are mapped to their respective categories through convolution operations
to obtain the output results. GGCNN is an end-to-end single-stage detection architecture. It has
inherent limitations in capturing key information from small targets, and there is still room for
improvement in its overall detection accuracy. However, Unet-DGN-L2 compensates for this
drawback through the splicing and fusion of feature maps and the fusion of the global field of view
and the local field of view in DGN.

Figure 4. The overall network architecture of UNET-DGN-L2 is mainly composed of the Unet
model and the DGN model. The numbers above each feature map represent the number of its

channels. The output results include the center position p of the end actuator of the parallel gripper,
the sine and cosine values of the rotation Angle of the gripper around the Z-axis, and the required

width w of the gripper

5. Result and discussion

The experimental environment configuration is shown in Table 1. In this environment, we carried
out the construction and training of the Unet-DGN-L2 model. After adopting the Cornell dataset, the
weight and bias parameters of the Unet-DGN-L2 model were initialized as random values and input
into the model. Operations such as convolution, pooling, and normalization were performed
according to the network structure, and finally the output result was obtained. Compare the output
value obtained by forward propagation with the real label and calculate the error. Based on the error
results, the backpropagation algorithm is used to calculate the weights of each layer and the gradient
of bias in order to update the parameters. Based on the results of the gradient calculation, the
weights and bias parameters are adjusted using a learning rate of 0.001. Repeatedly carry out the
above steps. After 300 training epochs, the training error meets the requirements.
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Table 1. Experimental environment

Operating system  Win11

PyTorch Version 
CPU 
GPU 

Batch size 
Number of learning rounds 

Optimizer 
Learning rate 

L2 regularization penalty coefficient 
Loss function 

torch2.7.0
Inter(R) Core(TM) i9

NVIDIA GeForce RTX 3070 T
2

300
AdamW

0.001
0.0001
MSE

In this experiment, the Unet-DGN-L2 model is placed on the Cornell dataset for testing without
data augmentation operations. The training results are shown in Figure 5, and the values of the loss
function converge in the second half. In this paper, the standard rectangular metric is adopted to
evaluate the model. Only when the difference between the generated grasping Angle and the correct
grasping Angle is within 30° and the intersection and union ratio (IoU) score is greater than 0.25 can
it be judged as a correctly generated grasping box. The mathematical expression is as follows:

(8)

where     is the generated grasping Angle,    is the correct grasping Angle.    is the
generated grasping area, and    is the actual grasping area.

In this experiment, the grasping block diagram generated by the Unet-DGN-L2 model is shown
in Figure 6. The Unet-DGN-L2 model was compared with the GG-CNN model on the Cornell
dataset, and the results are shown in Table 2. It can be found that the accuracy rate has increased by
17%, and it has increased by 13% compared with the improved GGCNN model. The experimental
results prove that due to the stitching and the combination of local and global fields of view used in
the Unet-DGN-L2 model, it is more conducive to feature extraction compared with GG-CNN,
performs better in the dataset, and is more practical.

⎧⎪⎨⎪⎩ θI − θ̂I < 30∘

IoU (GI , ĜI) = GI∩ĜI

GI∪ĜI

> 0.25∣ ∣θI    ̂θI    GI 

ĜI  
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Figure 5. Loss curve graph of the Unet-DGN-L2 model during 300 rounds of training

Figure 6. Grab block diagram: The correct grab box is composed of black and green borders, while
the incorrect grab box is composed of yellow and blue borders

Table 2. Evaluation performance of different network models under training on the Cornell dataset

Network Accuracy
GGCNN 

Improved GGCNN [15]
Unet-DGN-L2

69%
73%
86%
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6. Conclusion

In this paper, a pose estimation algorithm for visual robots grasping target objects based on Unet are
proposed, for the first time, and the Unet is introduced into the grasping pose estimation model
successfully. And by cascading a lightweight DGN with a decoupled grasping network, the
generation of the initial grasping rectangle was achieved. The experimental results on the public
dataset Cornell show that this method has higher accuracy than the GG-CNN model, with an
accuracy rate of 86%, and can predict a better grasping representation for robot grasping. This result
indicates that the improvement on the Unet architecture is more efficient than the GG-CNN model,
but there are still limitations in the model accuracy. In the subsequent work, we will study how to
improve the success rate of the Unet model's grasping by improving it, and consider the autonomous
grasping of the robotic arm combined with deep learning in a chaotic environment.
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