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Abstract. With the rapid advancement of wireless communication technologies, the
increasing diversity of modulation schemes poses significant challenges for traditional
modulation recognition methods in complex communication environments. To address this,
this research proposes a hybrid deep learning model that integrates Convolutional Neural
Networks (CNN) and Transformers. The CNN module is employed to extract local time-
frequency features from the modulated signals, enhancing the model's capacity to capture
short-term dependencies. Meanwhile, the Transformer module leverages its self-attention
mechanism to model global temporal dependencies, improving recognition accuracy for
complex modulation patterns. The model is trained and validated using the publicly
available DeepSig RadioML 2018.01A dataset across various Signal-to-Noise Ratio (SNR)
conditions, ranging from -20 dB to 30 dB. Experimental results demonstrate that our hybrid
model achieves a remarkable recognition accuracy of up to 91% in environments with SNRs
above 10 dB, highlighting its robustness and effectiveness in modulation recognition tasks.

Keywords: deep learning, transformer model, convolutional neural network, automatic
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1. Introduction

Signal modulation is an important technique in wireless communication. It has important application
value in military field, signal monitoring, etc. Automatic Modulation Recognition (AMR), as a
major part of signal modulation, has the core task of distinguishing the modulation mode used in
modulated signals and estimating the modulation-related parameters without relevant a priori
information. With the development of wireless communication technology and the complexity of the
signal environment, the recognition accuracy of traditional modulation recognition methods is
limited under different signal-to-noise ratio conditions, and the application of Deep Learning (DL)
to AMR has gradually become mainstream.

In this paper, we propose an automatic modulation recognition method based on a hybrid CNN-
Transformer model. Convolutional Neural Network (CNN) is responsible for extracting local time-
frequency features of the signal, reducing the dimensionality of the data and improving the model's
ability to perceive the short-time information. Transformer uses the self-attention mechanism to
model the global temporal dependence of the signal and enhance the recognition ability of complex
modulation patterns. In this study, simulation experiments are conducted based on the DeepSig
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RadioML 2018.01A public dataset to test the classification performance of the model under different
signal-to-noise ratios, and the CNN-Transformer combination model proposed in this paper can
show better recognition ability under high signal-to-noise ratio conditions, which can provide an
efficient and robust solution for automatic modulation recognition, and maintain a high level of
recognition performance under complex channel environments.

2. Signal modulation and Deep Learning

2.1. Signal modulation basics

2.1.1. Signal modulation principles and applications

Signal modulation is the process or processing method of changing certain characteristics (such as
amplitude, frequency, or phase) of one waveform according to another waveform or signal [1]. In
the communication system, the main purpose of the modulation technique is to guarantee the
effective transmission of the signal in the channel, and to provide a solid basic support for the
subsequent data demodulation and processing as well. The form of signal modulation can be divided
into analog modulation and digital modulation according to the type of the original signal. Common
forms of digital signal modulation include amplitude keying (ASK), frequency shift keying (FSK),
phase shift keying (PSK) and quadrature amplitude modulation (QAM). In practical applications,
modulation identification technology is widely used in electronic reconnaissance, spectrum
detection and many other military and civilian fields.

2.1.2. Development of signal modulation techniques

Early research was mostly based on instantaneous and statistical features for classification, and the
classifiers used by engineers included Support Vector Machines (SVMs) as well as Decision Trees,
etc. In 2016, as deep learning continued to make technical breakthroughs, the success of techniques
such as residual neural networks in image processing inspired researchers to introduce deep learning
into signal processing [2]. Subsequent research aimed at improving the accuracy of modulation
mode recognition, mainly focusing on the attempt of new networks and the combination between
different networks to realize the diversity of modulation recognition modes.

2.2. Application of Deep Learning in signal processing

2.2.1. Basics of Deep Learning 

Deep Learning (DL) is a branch of machine learning and is an algorithm that uses neural networks
as an architecture to learn representations of information.
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Figure 1: The structure of a single neuron in a neural network

Among them, neural network is a computational model inspired by the traditional biological
nervous system and consists of a large number of artificial neurons as shown in Figure 1. It is able to
learn patterns and features from a large amount of data by adjusting the weights of different
parameters to achieve complex mapping relationships [3]. Compared with traditional methods, deep
learning has the advantage of using more efficient feature extraction algorithms instead of acquiring
features manually, reducing the dependence on domain knowledge and improving the generalization
ability of the model.

2.2.2. Convolutional neural networks in a nutshell

Figure 2: Schematic diagram of CNN structure

CNN, or Convolutional Neural Network, is a special neural network model designed based on
biological visual processing.CNN uses at least one layer of convolutional operation in the network
architecture instead of matrix multiplication in traditional networks, and is able to effectively extract
the local features of the input data by means of local connectivity and weight sharing. Its main
components include a convolutional layer, a pooling layer and a fully connected layer [4]. As shown
in Figure 2 the convolutional layer extracts features through convolutional operations, the pooling
layer is used for dimensionality reduction and to improve the robustness of the model, and the fully
connected layer is used to output the classification results. Nowadays, with the continuous
development of deep learning, CNNs are widely used in Computer Vision (CV) [5]. In signal
processing tasks, CNNs can extract local features from raw signals, but have limited ability to model
long time dependencies or global information.
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2.2.3. Transformer in a nutshell

Figure 3: Transformer schematic

Transformer is a deep learning model based on a self-attention mechanism proposed by Google
Brain in 2017. It was initially applied in the field of Natural Language Processing (NLP), but has
been widely used in CV in recent years. As shown in Figure 3, the transformer consists of two
modules, Encoder and Decoder. The encoder part is mainly used to extract global feature
information from the input sequence. The Decoder is similar in structure to the Encoder, but with the
addition of Masked Multi-Head Attention, which prevents the model from obtaining subsequent
information in advance of the current output. Unlike traditional neural networks, the transformer is
able to process sequential data in parallel, which is suitable for long time series modeling [6].
Compared to traditional CNNs that focus more on local features, transformer is better at modeling
the signal as a whole. It shows good recognition efficiency and accuracy in signal modulation
recognition tasks.
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3. Deep Learning based automatic modulation recognition experiments

3.1. Experimental data analysis

3.1.1. Data set description

Table 1: 2018.01A dataset attributes [7]
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In this study, the DeepSig RadioML 2018.01A dataset is used, and the data are stored as In-phase
and Quadrature (IQ) in the format of a floating-point type 2D vector, with the dimension of a single
sample being 1024 sampling points, each of which contains information about both I/Q channels.
The labels are stored in One-Hot coded form and are subsequently converted to integer category
indexes.AS shown in Table 1. The dataset covers 24 modulation modes with 4096 data entries for
each modulation mode, totaling 2555904 data entries. These modulations cover common signal
types in analog and digital communications, including analog modulation versus digital modulation,
and the signals are uniformly distributed over 26 SNR levels ranging from -20 dB to 30 dB.

3.1.2. Preprocessing of the dataset

In the processing of the original dataset, each SNR=10db was used as a criterion for slicing, and
each modulation data under different intervals was extracted to form a set of six samples. At the
same time, each selected SNR interval is sliced twice and divided into training set, test set A and
validation set B in the ratio of 6:2:2, and saved as independent HDF5 files. Random indexing is used
to ensure a balanced distribution of samples during the partitioning process. Each file contains three
sets of data: X (IQ signal), Y (modulation label) and Z (SNR label).

3.2. Network architecture and training program

3.2.1. Cnn-transformer model architecture design

In order to extract the multilevel features of the modulated signal more effectively, a hybrid model
combining CNN and Transformer is designed and adopted in this study. As shown in Figure 4, this
model combines the advantages of both: CNN is more suitable for extracting the local time-domain
features of the modulated signal, whereas the Transformer is better at modeling the global context
and long-term dependencies of the signal. information and long time dependencies of the signal.
Through this combination of local and global feature extraction mechanisms, the model is able to
understand the structure of the modulated signal more comprehensively.
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Figure 4: Network architecture schematic

The input to the model is a one-dimensional IQ signal sequence with a size of 1024 × 2, which
means that there are 1024 time points for each sample, and each time point contains both real and
imaginary part information. The input data is first passed through a three-layer 1D convolutional
network with a convolutional kernel size of 3, a same filling mode, and a number of channels of 32,
64, and 128. After each layer of convolution, a ReLU activation function is accessed to enhance the
nonlinear expression ability of the model. After the convolution operation, the model is able to
extract local temporal features such as waveform inflection points, abrupt trends and frequency
changes.

This process can be briefly represented by the following pseudo-code:

# Input: x, shape [Batch, 2, 1024]

# - Batch: Number of input samples

# - 2: I/Q channels (In-phase and Quadrature)

# - 1024: Time steps for each sample

# First convolution layer with 32 filters

x = Conv1D(in_channels=2, out_channels=32, kernel_size=3, padding=1)(x)

x = ReLU()(x) # Non-linear activation to introduce non-linearity

# Second convolution layer with 64 filters

x = Conv1D(32, 64, kernel_size=3, padding=1)(x)

x = ReLU()(x)

# Third convolution layer with 128 filters
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x = Conv1D(64, 128, kernel_size=3, padding=1)(x)

x = ReLU()(x)

# Output shape after convolution: [Batch, 128, 1024]

# - 128 channels for enriched feature representation

# - 1024 time steps preserved

Next, the convolutional output is dimensioned to match the input format of the Transformer
encoder. Learnable positional coding is then added to preserve temporal information. The
Transformer encoder consists of three layers of encoders, each containing a multi-head attention
module with a feedforward neural network module, with the hidden size set to 128, the feedforward
dimensionality to 256, and the number of attention heads to 4. With this stacked structure, the model
is able to extract long-range correlation features layer-by-layer. The model is able to extract long-
distance correlation features layer by layer through this stacked structure.

The Transformer coding process can be simplified as shown in the following pseudo-code:

# Input: x, shape [Batch, 1024, 128]

# - 1024: Time steps (sequence length)

# - 128: Feature dimension from CNN

# Step 1: Add positional encoding to preserve temporal order

x = x + PositionalEncoding()

# Step 2: Multi-head attention layers for global dependency modeling

for _ in range(3):

# TransformerEncoderLayer consists of:

# - Multi-Head Attention: Attends to different parts of the sequence

# - Feedforward Network: Enhances feature representation

x = TransformerEncoderLayer(embed_dim=128, num_heads=4, ff_dim=256)(x)

# Output shape: [Batch, 1024, 128]

# - Time steps and feature dimensions remain consistent

The model performs mean pooling of the Transformer's output along the time dimension to form
a fixed-length vector, which is then classified by the fully-connected layer, and ultimately outputs 24
classes of modulation mode predictions.

# Input: x, shape [Batch, 1024, 128]
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# - 1024: Time steps

# - 128: Feature dimension

# Step 1: Global Average Pooling to compress time dimension

# This reduces the time sequence [1024] to a single feature vector [128]

x = MeanPooling(dim=1)(x) # shape becomes [Batch, 128]

# Step 2: Fully connected layer to classify 24 modulation types

output = Linear(128, 24)(x) # shape becomes [Batch, 24]

# The output is the probability distribution over 24 classes

3.2.2. Model training and optimization strategies

In order to ensure that the model has good generalization ability and robustness under different
signal-to-noise ratio environments, this paper carries out careful design and optimization of the
model training process. In the training process, the classification loss function based on cross
entropy (CrossEntropyLoss) is used, and the optimizer is chosen to be AdamW, which has a good
performance in deep learning, and the optimizer combines the weight decay mechanism, which can
help to prevent the model from overfitting. In terms of specific settings, the batch size is set to 64
during training, the initial learning rate is 5e-5, and the ReduceLROnPlateau learning rate
scheduling strategy is introduced. When the validation set loss does not decrease significantly in
several rounds of training, the learning rate will be automatically reduced, thus helping the model to
jump out of the local optimum. Meanwhile, in order to enhance the robustness of the model to
channel perturbations with different modulation sample variations, two data enhancement strategies
are introduced into the training data: one is to flip the IQ data with 10% probability, and the other is
to superimpose a small Gaussian noise with 10% probability, so as to improve the model's fault-
tolerance in complex environments. In addition, a gradient trimming operation is introduced in the
training to prevent gradient explosion, and the Early Stopping strategy is activated when there is no
boost in loss to terminate the training to avoid overfitting. The main flow of the training process can
be briefly represented as follows:

# Training configuration

batch_size = 64

learning_rate = 5e-5

num_epochs = 100

# Initialize optimizer and loss function

optimizer = AdamW(model.parameters(), lr=learning_rate)

criterion = CrossEntropyLoss()
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# Training loop

for epoch in range(num_epochs):

for x_batch, y_batch in train_loader:

# === Data Augmentation ===

if rand() < 0.1:

x_batch = flip(x_batch) # 10% chance to flip

if rand() < 0.1:

x_batch += torch.randn_like(x_batch) * 0.01 # Add Gaussian noise

# === Forward Propagation ===

preds = model(x_batch)

loss = criterion(preds, y_batch)

# === Backpropagation and Optimization ===

optimizer.zero_grad()

loss.backward()

optimizer.step()

# Learning rate scheduler

scheduler.step(loss)

# Early Stopping if no improvement

if early_stop_triggered():

break

Through the above optimization and control strategies, the model not only performs stably on the
training set, but also shows strong adaptive ability on the test set, which lays a good foundation for
the analysis of the subsequent experimental results.
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3.3. Experimental results and analysis

  

(a) Confusion matrix at -20db              (b) Confusion matrix at -10db

  

(c) Confusion matrix at 0db           (d) Confusion matrix at 10db

     

(e) Confusion matrix at 20db            (f) Confusion matrix at 30db
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(g)Transformer-CNN Accuracy Across Different SNR Levels
Figure 5: (a) Confusion matrix at -20db (b) Confusion matrix at -10db (c) Confusion matrix at 0db

(d) Confusion matrix at 10db (e) Confusion matrix at 20db (f) Confusion matrix at 30db
(g)Transformer-CNN Accuracy Across Different SNR Levels

In order to verify the recognition ability of the model under different SNRs, this paper conducted
tests under six SNR intervals from -20 dB to 30 dB. As shown in Figure 5, the overall recognition
accuracy of the model increases significantly as the SNR increases. At low SNRs such as -20 dB and
-10 dB, the confusion between modulation types is more serious, especially in the OOK and APSK
categories where the misrecognition rate is higher. However, above 10 dB, the accuracy rate
improves significantly, indicating that the model's ability to distinguish modulation types is
significantly enhanced. By observing the confusion matrix, it can be found that some modulation
types still have subtle confusion even under high SNR conditions, such as 64QAM and 128QAM,
which may be due to the similarity between the two waveforms under specific channel
characteristics. In addition, some modulations (e.g., FM, AM-SSB-SC) show high accuracy at all
SNRs, indicating that the model has good stability in feature extraction for such signals. As can be
seen from the accuracy plot, the model accuracy shows an upward trend with increasing SNR,
breaking through 85% at 10 dB and stabilizing above 90% in the 20 dB and 30 dB intervals, which
indicates that the designed CNN-Transformer model has an excellent modulation recognition
capability in high SNR.

4. Conclusion

In this paper, we mainly proposed and implemented a deep learning model based on the fusion of
CNN and Transformer, and tested its performance in the automatic modulation recognition task.
Experiments show that the fusion model has an average recognition accuracy of up to 90% in high
SNR environments (above 10db), but lower in low SNR environments. Through the confusion
matrix analysis under different SNR conditions, it is found that there is still confusion between some
modulation modes, and the discriminative ability of the model can be further optimized in the future.
There are still some shortcomings in this study, such as the basic network model has not been
introduced for comparison experiments. In addition, the current model does not involve cutting-edge
training strategies such as self-supervised learning and migration learning. Future research directions
include optimizing model compression techniques for deployment in resource-constrained
environments, exploring few-shot learning to improve recognition with limited training data, and
extending the model to real-world multi-path fading environments.
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