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Abstract. In this paper, we take a closer look at Stirling’s formula, a method used to estimate
factorials, particularly when nnn is large. Starting with its historical background, we then
give a derivation using the Gamma function and examine how the formula behaves
asymptotically. While it's a classic result in mathematics, we also discuss where it shows up
in real-world problems—like signal processing, rubber-based materials, and even brain
imaging. The way it links with Fourier transforms of the Gamma function shows how useful
it is for interpreting patterns like power-law decay and frequency changes in signals.
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1. Introduction

1.1. The history

Stirling’s formula, which is an important approximated tool for factorials and was introduced by
James Stirling, who is a famous Scottish mathematician. This approximation gives a high efficient
way to estimate factorials n! The positive number of variables that make it a good fit (the factorial of
a positive integer n) using logarithmic and exponential functions. Because of its precise
approximation for large values of n, the formula is widely used in many mathematic fields like
probability theory and statistics.

The original form of Stirling’s formula was introduced in Stirling’s1730 treatise Methodus
Differentialis, which use a logarithmic estimate for n!

After that, this first result was improved to formula with higher- order correction terms, which
makes a more accurate estimate for factorials

The addition of the   factor owed to Abraham de Moivre,, a current of Stirling who was
working on probability theory about Stirling’s formula, especially about the approximation of

ln(n!) ≈ nlnn − n.

n! ∼ √2πn( n
e )

n
  as n → ∞

 √2πn
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binomial coefficients for large values n
The appearance of Stirling’s approximation was closely related to two mathematical advances

during the 18th century: logarithmic theory developments and the Gamma function
introduction,which expand factorial operations to non-integer values. Euler played an important role
by his investigations of the Gamma function, with Gauss later providing more accurate and precise
mathematical foundations for these asymptotic expressions.

During the derivation process, Wallis's infinite product expression was used. Stirling's innovative
method constructed a continuous form, revealing an unexpected relationship between discrete
factorial operations and transcendental numbers. This relationship astonished the mathematicians of
that time. This breakthrough demonstrated the significant characteristics of mathematics in the
Enlightenment era, namely the profound connection between continuous analysis and discrete
mathematics.

In the 19th and 20th centuries, the application scope of this formula expanded significantly,
covering various fields such as information theory, computational complexity analysis, statistical
mechanics (especially in Boltzmann's entropy formula), and so on. Even today, this formula remains
an important tool in asymptotic analysis, focusing on improving the accuracy of error estimation and
conducting more extensive expansions.

1.2. Overview

Stirling’s formula serves as an approximation approach for factorials when the numbers involved
become large. Although de Moivre was the first person who introduced a similar idea, the formula is
more commonly relating to Stirling.Instead of relying on precise calculations, this method offers a
practical way to make approximation to factorials, which proves useful in areas such as
combinatorics, statistical mechanics, and probability. In this paper, we not only explore the
derivation of Stirling’s formula but also reveal the connection between Stirling’s formula and the
Fourier transform.

2. Derivation

2.1. Background knowledge

2.1.1. Proof of integral convergence

The Gamma function is defined by the integral:bounded above:   

If x> 0

Notice that   if x<0
By comparison    is finite
STEP2

0 < tx−1e−t < tx−1, t > 0

∫ 1
ϵ

tx−1dt = [ 1
x tx]

1

ϵ
= 1

x (1 − εx)  ϵ > 0

∫ 1
ϵ

tx−1dt = [ 1
x tx]

1

ϵ
= 1

x

∫ 1
0 tx−1dt = ∞

∫ 1
0 tx−1e−tdt
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When t is large,    is small. Because e−t decreases much more rapidly than tx−1
increases.

Precise: Maclaurin serves for   

Pick n large enough : n ≥x + 1

Hence    Γ(t) converges for every x> 0.

2.1.2. Γ(x) characterization

Γ(x) is uniquely characterized by: for x > 0
(1) Γ(1) =1 (2) Γ(x + 1) = x Γ(x) (3) Γ(x) is log convex

2.1.3. Proof of γ(x)

Proof of (1):
Through the definition of the Gamma function, we have:

Since 1 −1 =0, this simplifies to:

Since    =1, we obtain:

This is a standard integral, which evaluates to:

Thus, we conclude:
Γ(1)=1
Proof of (2):
Let x∈C with Re(x)> 0.The Gamma function is defined by:
Γ(x) =  

∫ ∞
1 tx−1e−tdt = lim

a→∞
∫ a

1 tx−1e−tdt

∫ 1
0 tx−1e−tdt

et

et = 1 + t
1! + t2

2! + ⋯ + tn

n!

et > tn

n! ⇒ e−t < n!t−n

tx−1 ⋅ e−t < n!tx−n−1 ≤ n!t−2

∫ ∞
1 n!t−2dt = n! lim

α→∞
∫ α

1 t−2dt = n! lim
a→∞

[− 1
t ]

a

1 = n! lα→∞ (1 − 1
a )n! < ∞

∫ ∞
1 tx−1e−tdt < ∞

Γ(1) = ∫
∞

0 t1−1e−tdt.

Γ(1) = ∫
∞

0 t0e−tdt.

t0

Γ(1) = ∫
∞

0 e−tdt.

∫
∞

0 e−tdt = 1.

∫ ∞
0 tx−1e−tdt
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We aim to prove the recurrence relation:
Γ(x + 1) = x Γ(x)
We begin by writing:
Γ(x + 1) =  
Apply integration by parts. Let:

Then:

We now analyze the boundary word   
As t→∞:
   since exponential decay dominates
As   :
   since Re(x)> 0
Therefore:

Thus:

Proof of (3)
The first step in establishing log-convexity is to calculate the derivatives of   :
[DiGamma and TriGamma Functions] The logarithmic derivative of the Gamma function which

is known as the diGamma function ψ(x), and its derivative, the triGamma function ψ′(x), are given
by:

Using the integral definition of Γ(x)，we can express these derivatives as:

This gives us the following expressions:

∫
∞

0 txe−tdt

u = tx ⇒ du = xtx−1dt, dv = e−tdt ⇒ v = −e−t

Γ(x + 1) = [−txe−t]∞
0 + ∫ ∞

0 xtx−1e−tdt

[−txe−t]∞
0  

txe−t = exlogt−t → 0

t → 0+

txe−t ∼ tx → 0

[−txe−t]∞
0 = 0 

Γ(x + 1) = x ∫
∞

0 tx−1e−tdt = xΓ(x) 

Γ(x + 1) = xΓ(x)

lnΓ(x)

ψ(x) = d
dx lnΓ(x) = Γ′(x)

Γ(x)

ψ′(x) = d2

dx2 lnΓ(x) = Γ′′(x)
Γ(x) − ( Γ′(x)

Γ(x) )
2

Γ′(x) = ∫ ∞
0 tx−1e−tlntdt

Γ′′(x) = ∫ ∞
0 tx−1e−t(lnt)2dt

ψ(x) =
∫ ∞

0 tx−1e−tlntdt

∫ ∞
0 tx−1e−tdt

ψ′(x) =
∫ ∞

0 tx−1e−t(lnt)2dt

∫ ∞
0 tx−1e−tdt

− (
∫ ∞

0 tx−1e−tlntdt

∫ ∞
0 tx−1e−tdt

)
2
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The non-negativity of ψ′(x) follows from the Cauchy-Schwarz inequality. Consider the inner
product space of measurable functions on (0,∞) with weight function   

Letting f(t) = lnt , g(t) =1, the Cauchy-Schwarz inequality show:

Which translates to:

Dividing both sides by    gives exactly
ψ′(x)≥0
Since    for all x>0，we conclude that lnΓ(x)is convex，and therefore

Γ(x)is logarithmically convex on  

2.2. Derivation of stirling’s formula

Rearrange and multiply by n

   which is Γ(x) should be between   
let  
whereµ(x) is an error term and    is halfway between    and   
We’d like f(x) to satisfy 2) and 3), because then it would have to be a multiple of Γ(x)! Let’s

calculate:

tx−1e−t

⟨f, g⟩ = ∫ ∞
0 f(t)g(t)tx−1e−tdt

⟨f, g⟩2 ≤ ⟨f, f⟩⟨g, g⟩

(∫
∞

0 tx−1e−tlntdt)
2

≤ (∫
∞

0 tx−1e−t(lnt(∫
∞

0 tx−1e−tdt)

(∫
∞

0 tx−1e−tlntdt)
2

ψ′(x) = d2

dx2 lnΓ(x) ≥ 0

 (0, ∞).

(1 + 1
k )k < e < (1 + 1

k )k+1

∏n−1
k=1(

k+1
k )k < en−1 < ∏n−1

k=1(
k+1

k )k+1

LHS : ( 2
1 )

1 ⋅ ( 3
2 )

2 ⋅ ( 4
3 )

3 ⋅ ⋅ ⋅ ( n
n−1 )

n−1 = nn−1

(n−1)!

RHS : ( 2
1 )

2 ⋅ ( 3
2 )

3 ⋅ ( 4
3 )

4 ⋅ ⋅ ⋅ ( n
n−1 )

n = nn

(n−1)!

so  nn−1

(n−1)! < en−1 < nn

(n−1)!

enne−n < n! < enn+1e−n

Γ(x) = ∫ ∞
0 tx−1e−tdt, x > 0

Γ(x) = (x − 1)!

(x − 1)! xx−1e−x and xxe−x

f(x) = xx− 1
2 e−x+μ(x)

xx− 1
2 e−x xx−1e−x xxe−x

x =
f(x+1)

f(x) =
(x+1)x+ 1

2
e−x−1eμ(x+1)

xx− 1
2 e−xeμ(x)
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Take in:

Let g(x) =RHS

To establish it is convex , we have to find an upper bound.
If   ,then apply Taylor series:

  

It means these series converge
So with this choice of µ(x), the function    satisfies the factorial property
  
So we want to prove the function

x = x(1 + 1
x )

x
+ 1

2 e−1eμ(x+1)−μ(x)

μ(x) − μ(x + 1) = (x + 1
2 ) ln(1+ 1

x ) − 1 

μ(x) = ∑∞
n=0 g(x + n)

|x| < 1,

ln(1 + y) = y − y2

2 + y3

3 − …

ln(1 − y) = −y − y2

2 − y3

3 − ⋯

so ln( 1+y
1−y ) = 2(y + y3

3 + y5

5 + ⋯)

set y = 1
2x+1

ln( 1+y
1−y ) = ln( 2x+2

2x ) = ln(1 + 1
x )

so  1
2 ln(1 + 1

x ) = 1
2x+1 + 1

3(2x+1)3 + 1

5(2x+1)5 + ⋯

g(x) = (x + 1
2 ) ln(1+ 1

x ) − 1 = 1
(2x+1)2 (

1
3 + 1

5(2x+1)2 + 1

7(2x+1)4 + ⋯)

so 0 < g(x) < 1
3(2x+1)2 (1 + 1

(2x+1)2 + 1
(2x+1)4 + ⋯)

(1 + 1
(2x+1)2 + 1

(2x+1)4 + ⋯) = 1
1− 1

(2x+1)2

=
(2x+1)2

4x(x+1)

0 < g(x) < 1
12 ( 1

x − 1
x+1 ), x > 0

0 < ∑∞
n=0 g(x + n) < μ(x) = ∑∞

n=1( 1
x − 1

x+1 ) = 1
12x

0 < μ(x) < 1
12x

f(x) = xx− 1
2 e−xeμ(x)

f(x + 1) = xf(x)

f(x) = xx− 1
2 e−x+μ(x)
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,where   
is log convex. We have

We want to show that ln f(x) is convex.
Since the second derivative is 0, the total of the convex functions is convex (because the latter is

defined by convexity).
1. –x is convex, as its second derivative is 0.
2. For   

The second derivative is:

3.µ(x) is the sum of translates of g(x)，so it is convex if g(x) is convex. Proof that g′′(x)>0 for
x>0 Let

Using the product rule:

Compute the derivative:

Thus:

Differentiate g′(x):

The first term is:

For the second term,use the quotient rule:

μ(x) = ∑∞
n=0 g(n)  and g(x) = (x + 1

2 )ln(1 + 1
x )

lnf(x) = (x − 1
2 )lnx − x + μ(x).

(x − 1
2 )lnx

[(x − 1
2 )lnx]

′
= ln x + (x− ⋅ 1

x = lnx + 1 − 1
2x .

[lnx + 1 − 1
2x ]

′
= 1

x + 1
2x2 > 0forx > 0.

g(x) = (x + 1
2 )ln(1 + 1

x ) − 1.

g′(x) = ln(1 + 1
x ) + (x + 1

2 ) ⋅ d
dx [ln(1 + 1

x )].

d
dx [ln(1 + 1

x )] =
−1/x2

1+1/x = − 1
x(x+1)

g′(x) = ln(1 + 1
x ) −

x+ 1
2

x(x+1) .

g′′(x) = d
dx [ln(1 + 1

x ) − d
dx [

x+ 1
2

x(x+1) ].

d
dx
ln(1 + 1

x
)] = − 1

x(x+1) .

d
dx

[
x+ 1

2

x(x+1) ] =
(1)⋅x(x+1)−(x+ 1

2 )(2x+1)

x2(x+1)2 .
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Expand the numerator:

Thus:

Now combine the terms:

Simplify:

For all x> 0:

so:

Thus it is log convex
But this means Γ(x) must be a multiple of f(x):

so we have to compute α

By calculus.We find the maximum value at x = n by   

Inflections points at   

x(x + 1) − (x + 1
2 )(2x + 1) = x2 + x − (2x2 + x + x + 1

2 ) = −x2 − x − 1
2 .

d
dx

[
x+ 1

2

x(x+1) ] =
−x2−x− 1

2

x2(x+1)2 .

g′′(x) = − 1
x(x+1) − (

−x2−x− 1
2

x2(x+1)2 ) = − 1
x(x+1) +

x2+x+ 1
2

x2(x+1)2 .

g′′(x) =
−(x+1)(x2+x+ 1

2
)+(x2+x+ 1

2
)

x2(x+1)2 =
1
2

x2(x+1)2 = 1

2x2(x+1)2 .

x2 > 0, (x + 1)2 > 0

g′′(x) = 1
2x2(x+1)2 > 0.

Γ(x) = αf(x) = αxx− 1
2 e−x+μ(x) = αxx− 1

2 e−x+ θ
12x .

y = xne−x

y′ = nxn−1e−x + xn ⋅ (−e−x)

y′ = 0

xn−1e−x(n − x) = 0

x = n

x = n + √n, x = n − √n

y′′ = n(n − 1)xn−2 ⋅ e−x + nxn−1 ⋅ (−e−x) + (−n)xn−1e−x + xne−x = n(n − 1)xn−2e−x − 2nxn−1e−x + xne−x

y′′ = 0
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Because the shape of    is similar to normal distribution analog  
So we change of variable   

n! is equal to n!

2.3. Theorem (stirling’s formula)

For x>0:

e−xxn−2[n(n − 1) + x2 − 2nx] = 0

x2 − 2nx + n(n − 1) = 0

x = 2n±2√n
2 = n ± √n.

y = xne−x μ ↔ n, σ ↔ √n

t = x−n
√n

x = t√n + n

∴ n! = ∫
∞

0 xne−xdx = ∫
∞

−√n(n + t√n)ne−(t√n+n) ⋅ √ndt.

= nn√n
en ∫

∞
−√n (1 + t

√n
)

n
e−√ntdt

α = ∫
∞

√n (1 + t
√n

)
n
e−√ntdt

 when n → ∞,  for each t (1 + t
√n

)
n
e−√nt

→ e− t2

2

→ ∫ ∞
−∞ e− t2

2 dt

α = I = ∫
∞

−∞ e− t2

2 dt

I2 = ∫ ∞
−∞ e− t2

2 dt ∫ ∞
−∞ e− s2

2 ds

t = rcosθs = rsinθ

I2 = ∫ 2π
0 ∫ ∞

0 e− r2

2 rdrdθ

I2 = ∫ 2π
0 dθ ∫ ∞

0 e− r2

2 rdr

= 2π

α = I = √2π

α = √2π

Γ(x) = √2πxx− 1
2 e−x+ θ

12x , 0 < θ < 1 depends on x
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2.4. Stirling’s approximation

When n is large:

3. Fourier transform

3.1. Fourier transform of xz−1e−x and relation to the Gamma function

3.1.1. Corrected derivation

There is no direct correlation between the function  and the Gamma function   , so
the   should be related with the Fourier transform.

Here is the revised derivation:

3.1.2. Fourier transform of f(x)

The single-sided Fourier transform of f(x) is:

3.1.3. Simplification

Combine the exponential terms:

3.1.4. Connection to the Gamma function

Recognize this as a Gamma function with a modified parameter:

3.1.5. Double integral interpretation

To directly write a double integral(if required)， relate the Gamma function and Fourth Fourier
Transform:

However， this is merely symbolic; the rigorous result is given by the closed-form expression

n! = √2πnn+ 1
2 e−n+ θ

12n .

n! ≈ √2πnn+ 1
2 e−n = √2πn( n

e )
n

f(x) = xz−1e−x Γ(z)

f(x) = xz−1e−x

F{f(x)}(ω) = ∫ ∞
0 xz−1e−xe−iωxdx.

F{f(x)}(ω) = ∫ ∞
0 xz−1e−(1+iω)xdx.

F{f(x)}(ω) = Γ(z) ⋅ (1 + iω)−z

Γ(z) = ∫
∞

0 xz−1e−xdx⟹ F{f(x)}(ω) = ∫
∞

0 (∫
∞

−∞ e−iωxdω)xz−1e−xdx.

Γ(z)(1 + iω)−z
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4. Derivation of the complex fourier series

The Fourier series’ complicated exponential form， ，is derived below.

4.1. Trigonometric fourier series

A periodic function f(t) which has period T can be written in the form:

Where  ，and the coefficient are

4.2. Complex exponential conversion

Using the formula of Euler’s, which   , write the following trigonometric functions:

4.3. Combining terms

Substitute the exponential forms in to the trigonometric series:

Combine coefficients into   :

The final complex Fourier series becomes:

With coefficients:

Assuming that the fundamental frequency is    , the Fourier series can be stated as follows; the
Fourier series representation of a periodic function is as follows:

Where the coefficients    are calculated as:

f(t) = ∑∞
n=−∞ Cne

inω0t

f(t) = a0 + ∑∞
n=1 (ancos(nω0t) + bnsin(nω0t))

ω0 = 2π
T

an = 2
T

∫ T/2
−T/2 f(t)cos(nω0t)dt, bn = 2

T
∫ T/2

−T/2 f(t)sin(nω0t)dt.

eix = cosx + isinx

cos(nω0t) = einω0t+e−inω0t

2 , sin(nω0t) = einω0t−e−inω0t

2i .

f(t) = a0 + ∑∞
n=1(an

einω0t+e−inω0t

2 + bn
einω0t−e−inω0t

2i )

Cn

C0 = a0, Cn = an−ibn

2 , C−n = an+ibn

2 (n ≥ 1).

f(t) = ∑∞
n=−∞ Cneinω0t

Cn = 1
T ∫ T/2

−T/2 f(t)e−inω0tdt

ω0

(1)

Cn
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4.3.1. Extension to non-periodic functions

In the case of non-periodic functions, we consider them as the limiting case of periodic functions
with  . Combining Equations (1) and (2):

Let   , where as the causes are frequency interval becomes:  
Using the period-frequency relationship  , Equation (3) can be rewritten as:

Rearranging constants and simplifying:

As  :

The discrete summation in Equation(4) transforms into a continuous Riemann integral:

Thus,

4.4. Gamma function and its fourier transform

4.4.1. Relationship between exponential frequency modulated signal and Gamma function

An exponential frequency modulated (FM) signal can be stated as follows:

Where the phase    is given by:

(2)

T → ∞

(3)

ω = nω0 Δω = (n + 1)ω0 − nω0 = ω0

T = 2π
ω0

(3')

(4)

T → ∞

Δω → dω, ∑ω → ∫ ∞
−∞

(5)

F(ω) = ∫
∞

−∞ f(t)e−iωtdt

s(t) = Aejϕ(t)

ϕ(t)

ϕ(t) = 2πf0
eαt−1
α
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The Fourier transform of an exponentially frequency modulated signal can be used in some
circumstances to include integrals of the form:

Which can be expressed using the Gamma function. The Gamma function is defined as:

For    with   :

4.5. Fourier transform of the Gamma function

We test the integral in order to calculate its Fourier transform:

Combining the exponential terms:

4.6. Variable substitution

Using the substitution   , the integral simplifies to

4.6.1. Detailed substitution steps

Assume that   , then    or    substituting the element in the
integral:

4.7. Asymptotic behavior for large z

For large z, Stirling’s approximation provides:

∫ ∞
0 e−axxbdx

Γ(z) = ∫ ∞
0 xz−1e−xdx, Re(Z) > 0

s ∈ C R(s) > 0

Γ(s) = ∫
∞

0 ts−1e−tdt, where ts−1 = e(s−1)lnt

F(ω) = ∫ ∞
0 xz−1e−xe−iωxdx

F(ω) = ∫ ∞
0 xz−1e−(1+iω)xdx

u = (1 + iω)x

F(ω) = (1 + iω)−zΓ(z)

u = (1 + iω)x du = (1 + iω)dx dx = du
1+iω

F(ω) = ∫ ∞
0 ( u

1+iω )
z−1

e−u ⋅ du
1+iω

F(ω) = (1 + iω)−z ∫ ∞
0 uz−1e−udu = (1 + iω)−zΓ(z)

Γ(z) ≈ √2πz( z
e )

z
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5. Application in signal processing

5.1. Power-law decay in signals

The Fourier transform   models power-law decay in signals.
For instance， in viscoelastic materials， this describes stress relaxation with a memory kernel

proportional to  .

5.1.1. Example1: polymer melts (natural rubber)

For polyisoprene rubber， stress relaxation under step strain follows:   . The
memory kernel ’ s Fourier transform matches the given expression [1].

5.1.2. Example2: automotive rubber dampers

Stress relaxation in car suspension components follows:

Where    is the Mittag-Leffler function [2].

5.1.3. Example3: chewing gum viscoelasticity

Experimental measurements show:

Matching the model when  [3].

5.2. Communication systems

In order to improve the anti-interference ability and integrity of the signal, EFM signals are adopted
in wireless communication. According to [4], in mobile communications, frequency modulated
signals improve spectral efficiency and may reduce the impact of multi-path fading.

5.3. Radar systems

Radar systems use RFW (RF) wave forms to enhance target detection and resolution. This paper
discusses the application of frequency-modulated continuous wave (FMCW) radar through [5],
which often uses exponentially chirped signals to achieve better range resolution and clutter
suppression.

5.4. Biomedical signal processing

In biomedical engineering, EFM signals are applied in medical imaging and neural signal analysis.
Study [6] explores the use of frequency-modulated signals in functional magnetic resonance
imaging (fMRI) to improve brain activity mapping.

F(ω) = (1 + iω)−zΓ(z)

tz−1

σ(t) ∝ tz−1, z ∈ (0,1)

σ(t) = σ0 ⋅ Ez(−(t/τ)z)

Ez(−(t/τ)z)

G(t) = G0 ⋅ (t/t0)−0.3

z = 0.7
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