References
[1]. Kaluzna, K., Li, J., Brenna, E., Hollmann, F., & Musa, A. (2022). Ketoreductase catalyzed (dynamic) kinetic resolution for biomanufacturing of chiral chemicals. Frontiers in Bioengineering and Biotechnology, 10, 929784. frontiersin.org
[2]. Bornscheuer, U. T. (2020). Power of biocatalysis for organic synthesis. ACS Central Science, 6(12), 2046–2057. pubs.acs.org
[3]. Savile, C. K., Faul, M. M., & Turner, N. J. (2021). Biocatalysis. Nature Reviews Methods Primers, 1, Article 44. nature.com
[4]. Romano, F., Hartmann, M., & Müller, C. R. (2023). Engineering ketoreductases for the enantioselective synthesis of aromatic β-hydroxy nitriles. Chemical Communications, 59, 785–788. pubs.rsc.org
[5]. Chen, H., Li, J., Zhao, X., & Gao, Y. (2021). Synthesis of the sitagliptin intermediate by a multi-enzymatic cascade using transaminase, esterase, aldehyde reductase, and formate dehydrogenase. Biotechnology and Bioprocess Engineering, 26(4), 485–492. pmc.ncbi.nlm.nih.gov
[6]. Schmidt, J., & Fischer, C. (2022). Three multi-enzyme cascade pathways for conversion of C1 to C2 alcohols: A KnowVolution strategy. Current Opinion in Green and Sustainable Chemistry, 33, 100555. sciencedirect.com
[7]. Johnson, M. A., & Brown, L. E. (2023). Evaluating multienzyme cascade routes for pharmaceutically relevant targets. European Journal of Organic Chemistry, 2023(14), e202301236. chemistry-europe.onlinelibrary.wiley.com
[8]. Zhao, Q., Chen, Z., Soler, J., & Rui, J. (2024). Application of directed evolution and machine learning to enhance biocatalysis. JACS Au, 4(3), 456–467. pubs.acs.org
[9]. Li, Y., Zheng, S., & Xu, B. (2022). Designing for sustainability with biocatalytic and chemoenzymatic cascades. Green Chemistry, 24(18), 7823–7836. sciencedirect.com
[10]. Musa, A., Hollmann, F., & Li, J. (2021). Advances in protein engineering of ketoreductases for the synthesis of chiral β-hydroxy acids. Frontiers in Chemistry, 9, 587. pmc.ncbi.nlm.nih.gov