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Abstract. The National Aeronautics and Space Administration proposes that in the process of
changing the civil aviation driving mode from Dual-Pilot Operation to Single-Pilot
Operation, the problem of pilot workload assessment needs to be solved. To address this
problem, the first need is to realize high-precision real-time detection of pilot behavior. In
this paper, based on multi-source heterogeneous data, we realized the pixel-level weighted
fusion of multiple sets of differentiated weights, proposed an improved pilot behavior
detection model on the basis of YOLOv8m-pose, and carried out the model evaluation in the
two dimensions of operation speed and detection accuracy, on the mixed behavioral dataset,
the proposed model achieves a mAP@0.5:0.95 improvement of 208.7% over original model,
with a detection speed of 39 FPS. It enables high-precision, real-time pilot behavior
detection, providing partial theoretical support for Single-Pilot Operation workload
assessment.
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1. Introduction

Currently, Daul-Pilot Operation (DPO) is the main piloting mode adopted by civil airliners.
Considering the global lack of pilots due to the gradual congestion of airspace and the pursuit of
lower operating costs by airlines, National Aeronautics and Space Administration (NASA) has
systematically proposed the Single-Pilot Operation (SPO) model, in which pilots collaborate with
cockpit automation systems and ground-based airline controllers [1]..

In the Single-Pilot Operation (SPO) mode, in order to ensure flight safety, specific systems need
to implement function allocation based on the pilot's workload, driving status, and physical status.
Therefore, NASA proposes Standard Operating Procedure (SOP) based workload assessment in the
Single-Pilot Operation (SPO) mode, and the assessment of the workload needs to be preceded by a
high-accuracy real-time detection of the pilot's behavior, and then based on the SOP, the workload is
assessed by the pilot's behavior. The assessment of workload requires a high-precision real-time
detection of the pilot's behavior, and then based on the SOP to determine whether the pilot is in a
normal physical state and whether to comply with the driving regulations [2]. Different SOPs for
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pilot workload assessment correspond to different assessment criteria, but the assessment methods
are common and can be applied to both SOP and DPO flights.

In order to achieve high-precision real-time detection of pilot behavior, this study uses a behavior
recognition model by fusing multi-source heterogeneous behavioral data to detect pilot behavior,
which is a special behavior of a special object in a special scenario, and analyzes the performance of
the model. Currently, there is a lack of pilot behavior detection algorithms based on the fusion of
multi-source heterogeneous data for pilot workload assessment worldwide, so the significance of
this research is to provide theoretical support for the workload assessment under the Single-Pilot
model based on SOP proposed by NASA, and to help China's civil aviation industry to transition to
unmanned pilots.

2. Analysis of the current state of research

2.1. Pilot workload assessment

The main assessment methods for pilots' workload include: performance assessment based on error
or expert assessment, subjective assessment based on questionnaires, and objective assessment
based on sensors. Regarding subjective assessment methods, K. Mohanavelu et al. utilized scales to
assess pilots' loads and workloads, which are simple and reliable but do not provide real-time
assessment [3]. Regarding performance assessment methods, Xiaodong Cao et al. and Andrea
Alaimo et al. used examiners and corresponding indices to assess pilot tasks [4-5]. This method can
assess workload more accurately compared to subjective measurements, but it is difficult to achieve
real-time detection. Regarding objective assessment methods, Michael Wagner et al. assessed pilot
workload through sensors, which is real-time but lacks generalizability [6]. Compared to the above
methods SOP-based pilot workload assessment provides a more standardized and time-sensitive
method.

2.2. Pilot behavior data acquisition

The main sources of pilot behavioral data include: wearable physiological sensors, Quick Access
Recorder (QAR), and visual sensors. In terms of wearable physiological sensors, Li Yuhan et al.
used physiological sensors to collect physiological indicators [7]. This method has high accuracy,
but the wearable sensor has the defects of affecting the pilot's range of motion, distracting the pilot's
attention, and having low measurement accuracy. In terms of QAR, Wang Lei et al. used QAR to
achieve quantitative calculation of unsafe pilot behavior [8]. This approach improves the mining of
QAR data information, but suffers from the shortcomings of low recognition accuracy and
recognition time lag. In terms of visual sensors, Yu Shen et al. installed multiple cameras in the
cabin to collect RGB-D data [9]. The data collected by this method can realize the real-time
reflection of real and accurate pilot behavior within the computer.

2.3. Multi-source heterogeneous data fusion

Compared with single-source data, multi-source heterogeneous data can be reasonably processed
and fused to describe the research object more comprehensively and accurately. Multi-source
heterogeneous data are widely used in the field of computer vision, which can be categorized into
pixel-level fusion, feature-level fusion and decision-level fusion according to the fusion stage. In
terms of pixel-level fusion, Mrityunjay Kumar et al. proposed a full-variable regularization
framework for pixel-level fusion of multi-type images [10]. This method can effectively fuse
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complementary information between different data, but the noise in the data is more likely to be
fused directly. In terms of feature-level fusion, Yan Shengli et al. proposed that RGB and depth
images are subjected to feature extraction and feature fusion by means of a two-stream
convolutional neural network and a multimodal feature fusion module [11]. This method reduces the
amount of data, but is prone to the defect of inaccurate feature extraction. For decision-level fusion,
Yao Jun et al. fused the detection results with an object detection model [12]. This method provides
more accurate detection results than a single data source, but lacks the direct utilization of
complementary information between data.

2.4. Behavioral detection methods

Currently, behavioral detection is mainly realized by neural network models using collected
information such as vision, speech, and text. The YOLO series, a one-stage detection model based
on visual information, has a faster detection speed than a two-stage detection model, and thus is
widely used in fields which requires fast detection. Haiwei Chen et al. used the improved YOLOv8
to study student classroom behavior detection and improved the average accuracy in multi-density
and occlusion scenarios [13]. Mingyang Li et al. proposed a smoking behavior detection model
based on YOLOv8 and transfer learning to improve the real-time and accuracy of smoking behavior
detection [14].

3. A heterogeneous data processing approach based on typical pilot behavior

3.1. Typical pilot operational behavior data sources

The dataset used in this study is the APA dataset captured by Yu Shen et al. in the Level D simulator
environment of 737MAX using the Intel Real Sense D435i camera, which contains multimodal data
of 32 typical pilot maneuvers [5]. In this study, among them,pilot control column and thrust levers
behavior data are selected, and the study is carried out based on two kinds of heterogeneous data,
namely, RGB images and depth images.

3.2. Pre-processing of typical pilot behavior data

3.2.1. Data labeling

The RGB images in the pilot manipulation behavior data were batch labeled using the labeling
software Labelme with 1 bounding box and 17 keypoint, including nose, left eye, right eye, left ear,
right ear, left shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left hip, right
hip, left knee, right knee, left ankle, right ankle. The occluded keypoint was labeled based on the
empirical judgment for labeling, as shown in Figure 1.
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Figure 1: Annotation of pilot behavioral data for steering stick manipulation

3.2.2. Pixel-level weighted fusion of RGB images with depth images

The Labelme format data is converted to YOLO format data, and the specific operations include
coordinate normalization, adding category labels and visibility labels. Perform pixel-level weighted
fusion of RGB image and depth image as shown in Figure 2. The specific process is as follows:

1) Align the dimensions of RGB image and depth image;
2) The R channel of the color-coded depth image, which is less affected by noise, is selected and

normalized with the pixel values of the three RGB channels:

3) Weighted fusion of the three RGB channels with the Horizontal Disparity channel
respectively;

4) The fusion result is scaled to the range of 0-225 and saved as a three-channel JPG image.
In order to effectively utilize the complementary information of the two kinds of data and

suppress the redundant information, six groups of fusion data with different weights are generated so
that the weights that make the model detection accuracy the highest can be obtained through
experiments. The weight combinations are shown in Table 1 and the fusion diagram is shown in
Figure 3.

(1)

(2)



Proceedings	of	CONF-MSS	2025	Symposium:	Machine	Vision	System
DOI:	10.54254/2755-2721/2025.CH24723

90

Figure 2: Pixel-level weighted fusion

Table 1: Integration weights

α(RGB) 0.3 0.4 0.5 0.6 0.7 1.0

β(Depth) 0.7 0.6 0.5 0.4 0.3 0

Figure 3: Fusion map with different weights

3.3. Data analysis of typical pilot operational behavior

Analysis of the data revealed that:
1) The pilot's behavior in manipulating the joystick was mainly a large movement of the left

elbow and left wrist, and the joystick manipulation was mainly a large movement of the right elbow
and right wrist, while the rest of the keypoint remained basically unchanged;

2) During the whole maneuvering process, more than 50% of the key points are blocked by
cockpit facilities or other parts of the pilot.

Therefore, the use of the attitude estimation model trained on the common life scene as a dataset
to detect the pilot's behavior may have low accuracy, which will be verified by experiments in the
subsequent part of this paper

3.4. Training dataset composition

Due to the Single-Pilot attitude change in a single behavioral data, training with one behavioral data
alone may suffer from overfitting or poor generalization over other behavioral data, so the dataset in
this study mixes pilot manipulation of the joystick behavioral data with pilot manipulation of the
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thrust handle behavioral data. In addition, according to the original dataset has the characteristics of
scene fixation and small magnitude of attitude change, so the required features can be learned by
applying the appropriate data volume model. The final training dataset is composed as follows: 921
images for the training set, 142 images for the validation set, and 50 images for the test set,
distributed in a ratio of approximately 18:3:1.

4. Pilot behavior detection based on the YOLOv8-pose model

4.1. YOLOv8-pose detector model

YOLOv8 is a typical one-stage detection model, which implemented better balance between
speed and accuracy . Its network structure consists of three parts: backbone, neck, and head.
backbone network extracts multilevel features from three-channel images based on EfficientNet,
neck fuses features from backbone across scales based on NAS-FPN, and head decouples the
multilevel fused features to output the category probability and bounding box coordinates and their
confidence [15].YOLOv8-pose model adds the output of keypoint coordinates on the basis of
YOLOv8 head, and the network structure is shown in Figure 4.

Figure 4: YOLOv8-pose network structure

4.2. Pilot behavior detection method based on pixel-level weighted fusion

4.2.1. Training process

The fused three-channel JPG image is first preprocessed through resolution adjustment and pixel
value normalization. It is then fed into the model, where the backbone performs feature extraction,
followed by the neck for cross-scale feature fusion. Finally, the head outputs keypoints,
classification, and bounding box branches in parallel, and the composite loss function is computed
as follows:

(3)
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where λ is the loss weight.  ,  ,  ,   represent bounding box loss, categorization
loss, distribution focus loss, keypoint location loss, and keypoint visibility loss, respectively:

where IoU denotes the intersection and concurrency ratio of the predicted frame to the real frame,
  denotes the square of the Euclidean distance between the predicted frame and the center point of
the real frame, c denotes the diagonal length of the smallest encircling frame, and αv the difference
in the beam width-to-height ratio.

where    is the predicted category score from the sigmoid output and    is the target category
label.

Where t denotes the true coordinate value,    are the neighboring discrete coordinate
values, and    are the predicted discrete probability distributions.

where d denotes the squared Euclidean distance between the predicted keypoint and the true
keypoint, σ denotes the standard deviation corresponding to the keypoint type, area denotes the area
of the target box, and mask denotes the keypoint visibility mask.

where    denotes the predicted keypoint visibility confidence and    the true visibility label.
Then, backpropagation is performed to calculate the gradient of the loss to the trainable

parameters, combined with the adaptive learning rate, the trainable parameters are updated by the
gradient descent method, and the training flow is shown in Figure 5.

Figure 5: Training flowchart
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Hyperparameters need to be adjusted before training, including learning rate and its related
parameters, data enhancement, training strategy. The following is the basis for adjustment:

1) Adaptive learning rate: The initial learning rate (lr0) is finally selected as 0.001 through three
experiments, which can make the loss decrease steadily, and the cosine learning rate scheduler
(cos_lr) is enabled to update the learning rate to prevent convergence oscillation:

where    denotes the initial learning rate,    denotes the final learning rate, T denotes the
total training epochs, and current_epoch denotes the current training rounds.

Enable the AdamW optimizer for parameter updates to prevent overfitting:

Where    denotes the model parameters at the tth iteration,   denotes the learning rate at the tth
iteration,   denotes the first-order moment estimation correction term, and   denotes the second-
order moment estimation correction term.

2) Data Enhancement: Simulate the change of lighting conditions in the cockpit, and enhance the
size of hue enhancement (hsv_h), saturation enhancement (hsv_s) and brightness enhancement
(hsv_v). Simulate changes in camera angles by slightly increasing the size of the random rotation
angle range (degrees), the random image translation scale (translate), and the perspective
transformation intensity (perspective). Simulate the possible scenario of detecting pilots in different
cockpit seats by enabling the horizontal flip probability (fliplr). During the detection process, the
cockpit scene and the position of the pilot are usually more fixed, so the channel BGR order
adjustment probability (bgr), vertical flip probability (flipud), and MixUp data enhancement strength
(mixup) are disabled to prevent data distortion.

3) Training strategy: epochs is set to 40, batch Size is set to 32, and Patience is set to 8, which can
avoid overfitting or underfitting.

The specific parameter values are shown in Table 2.

(9)

ηmax ηmin

(10)

θt ηt

m̂t  v̂t
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Table 2: Hyper parameter configuration

The basis for tuning the parameter Parameter name Worth

Stabilizes loss reduction, learning rate adaptive
lr0 0.001

cos_lr True
optimizer AdamW

Simulate changes in cockpit lighting conditions
hsv_h 0.06
hsv_s 0.8
hsv_v 0.9

Simulate changes in camera angle
degrees 5
translate 0.2

perspective 0.001
Simulates detection of pilots in different cockpit positions fliplr 0.3

Prevent data distortion
bgr 0

flipud 0
MixUp 0

Avoid overfitting or underfitting
epochs 40

batch Size 32
patience 8

4.2.2. Testing process

The image to be detected is input into the detection model, preprocessed, and then forward
propagated, after feature extraction and cross-scale feature fusion, the keypoint, classification, and
bounding box prediction results are output, and then post-processed, through Confidence
Thresholding (predict_conf=0.25,val_conf=0.001) and Non-Maximum Suppression (iou=0.7), filter
out the results with high confidence and suppress the results with high overlap with them, and
finally perform coordinate transformation to output the prediction results, the detection process is
shown in Figure 6.

Figure 6: Detection flow chart
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4.2.3. Assessment of indicators

In order to quantitatively evaluate the detection accuracy and detection speed of the models trained
by fusing data with different weights, we apply the Mean Average Precision (mAP) and the Frames
Per Second (FPS) as evaluation metrics:

Precision: the proportion of true positive samples that are predicted as positive by the model:

where TP denotes true positives and FP denotes false positives.
Recall: the proportion of true positives that are correctly predicted by the model.

where FN indicates false negative.
Average Precision (AP): assay performance measured by the area of the precision-recall curve at

different confidence thresholds.

where P denotes Precision and r denotes Recall.
Mean Average Precision (mAP): The average of the APs computed for the pose estimation task.

mAP@0.5:0.95 denotes the mean mAP of IoU thresholds from 0.5 to 0.95 strictly and
comprehensively reflects the model's ability to detect:.

Frames Per Second (FPS): indicates the number of complete images that the model can process
per second, reflecting the speed of detection:

where    is the total time consumed for a single image and   are the
preprocessing, inference, and post-processing times, respectively.

4.2.4. Experimental environment

The hardware environment for the training process in this study is: AMD Ryzen 7 5800H with
Radeon Graphics CPU, the software environment is: python-3.10.0, torch-2.7.0+cpu; the hardware
environment for the detection process is: NVIDIA GeForce RTX 3060 GPU, the software
environment is: Python-3.10.16, torch-2.5.1+cu121. YOLOv8m-pose, which has a good balance of
detection speed and accuracy, was used as the pre-training model for training.

(11)

(12)

(13)

(14)

(15)

Ttotal Tpre,  Tinf,  Tpost
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4.3. Typical pilot operational behavior data simulation and performance analysis

4.3.1. Training results and analysis

In this study, the fusion graph of 6 weights is trained with a minimum change threshold
min_delta=0, the counter is triggered when the current metrics are not at their historical best, and the
training is automatically stopped when val_loss or mAP does not improve significantly for more
than 8 epochs.

Figure 7: Training results of 6 different weights fusion images

Figure 7 shows the training results, the first three columns of the results represent the training
loss and validation loss, mainly focusing on the keypoint loss and the bounding box loss, and the last
four columns represent the detection precision, recall, and average precision mean of the bounding
box and keypoint. With the increase of epoch, the training loss and validation loss decrease steadily
and converge, and the precision, recall, and average precision mean increase rapidly at first,
fluctuate a little in the middle, but finally stabilize with a higher value. The results show that the
training effect is good, and there is no overfitting and underfitting.

4.3.2. Results and analysis of pilot's pilot stick maneuvering behavior detection

The results of different models tested on 50 datasets of manipulating the driver's stick behavior are
shown in Table 3, Weights(α) -mAP@0.5:0.95. The fitted curves are shown in Figure 8, the
mAP@0.5:0.95 and FPS objectively reflect the model detection ability.

Table 3: Comparison of the results of the pilot's driver stick manipulation behavior detection

Model mAP@0.5:0.95 FPS

YOLOv8m-pose 0.22 28
YOLOv8m-pose-α0.3 0.662 26
YOLOv8m-pose-α0.4 0.672 34
YOLOv8m-pose-α0.5 0.676 29
YOLOv8m-pose-α0.6 0.631 34
YOLOv8m-pose-α0.7 0.617 27
YOLOv8m-pose-α1.0 0.566 27
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Figure 8: Weights(α) -mAP@0.5:0.95 fitting curve

Table 3 shows the original YOLOv8m-pose model in the first row, followed by the model trained
using fused data with different weights. Figure 8 shows mAP@0.5:0.95 Maximum values occur
between α = 0.4 and α = 0.5. The analysis shows that when the weights α=0.4, β=0.6,
mAP@0.5:0.95 is 0.672, which improves 205.5% compared to YOLOv8m-pose, although it is faster
than mAP@0.5:0.95 slightly lower when α=β=0.5, but its speed is a faster 34FPS, which is able to
guarantee the detection accuracy and detection speed at the same time. Therefore, the weight α=0.4
and β=0.6 has the best detection effect on the pilot's joystick manipulation behavior.

4.3.3. Results and analysis of pilot handle manipulation behavior detection

The results of the different models tested on manipulating the thrust handle behavior on 50 datasets
are shown in Table 4, Weights(α)-mAP@0.5:0.95 fitted curves are shown in Figure 9.

Table 4: Comparison of pilot manipulation of thrust handle behavior detection results

Model mAP@0.5:0.95 FPS

YOLOv8m-pose 0.269 28
YOLOv8m-pose-α0.3 0.867 28
YOLOv8m-pose-α0.4 0.917 26
YOLOv8m-pose-α0.5 0.909 26
YOLOv8m-pose-α0.6 0.725 29
YOLOv8m-pose-α0.7 0.725 27
YOLOv8m-pose-α1.0 0.901 34
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Figure 9: Weights(α)-mAP@0.5:0.95 fitting curve

Table 4 shows the original YOLOv8m-pose model in the first row, followed by the model trained
using fused data with different weights. Figure 9 shows the maximum value of mAP@0.5:0.95
occurs between α = 0.4 and α = 0.5. The analysis shows that when the weights α=0.4 and β=0.6, its
mAP@0.5:0.95 is 0.917 improves 240.9% compared to YOLOv8m-pose with a speed of 26FPS, and
when the weights α=1.0 and β=0, its mAP@0.5:0.95 is 0.901 improves 234.9% compared to
YOLOv8m-pose with a speed of 34FPS, both of which are excellent at different levels.

4.3.4. Results and analysis of mixed behavior detection

The results of the different models tested on a mixed dataset of 25 sheets for each of the two
behaviors are shown in Table 5, Weights(α)-mAP@0.5:0.95 fitted curve is shown in Figure 10.

Table 5: Comparison of mixed behavior detection results

Model mAP@0.5:0.95 FPS

YOLOv8m-pose 0.241 38
YOLOv8m-pos-α0.3 0.708 29
YOLOv8m-pos-α0.4 0.744 39
YOLOv8m-pos-α0.5 0.728 37
YOLOv8m-pos-α0.6 0.651 31
YOLOv8m-pos-α0.7 0.635 22
YOLOv8m-pos-α1.0 0.67 22
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Figure 10: Weights(α)-mAP@0.5:0.95 fitting curve

The first row of Table 5 shows the original YOLOv8m-pose model, followed by the model
trained using different weights to fuse the data. The analysis of Figure 10 shows the maximum value
of mAP@0.5:0.95 occurs at α=0.4, which shows that when the weights α=0.4 and β=0.6,
mAP@0.5:0.95 is 0.744, which improves 208.7% compared to YOLOv8m-pose, with a speed of
39FPS, which is the best performance in terms of both accuracy and speed.

Through the analysis in section 3 above, when weights α=0.4, β=0.6, the trained model performs
well in detection speed and detection accuracy on both behaviors.

5. Conclusion

In the transformation of civil aviation driving mode from DPO to SPO, a pilot behavior detection
model based on pixel-level weighted fusion is proposed for the problem of SOP-based pilot
workload assessment, which realizes high-precision real-time monitoring of typical pilot
maneuvering behavior.

In this study, an improved pilot behavior detection model based on YOLOv8m-pose is proposed
and the corresponding model performance is evaluated. Pixel-level weighted fusion is performed
using multiple sets of RGB images and depth images with different weighting parameters, and the
fused images are used to train in the YOLOv8m-pose model, and the final model is obtained with a
detection speed of 39 FPS in the detection of a mixed behavioral dataset, mAP@0.5:0.95 is 208.7%
better than YOLOv8m-pose. This study provides an innovative pixel-level weighted fusion-based
pilot behavior detection method for NASA's proposed problem of evaluating a single flight
workload and for our country's realization of the civil aviation driving mode shift from DPO to SPO.

Problems required to be solved in the future research are:
1) Insufficient diversity in data sources, such as cockpit voice and text data;
2)Weak sample diversity , the research object is only from one model and two behaviors of one

pilot, and the generalization ability to different models of cockpits, different abilities of pilots, and
different behaviors of pilots is untested;

3)The implementation of pixel-level fusion is relatively simple, with weak anti-interference
ability, large computation, difficulty in realizing dynamic fusion weights, and difficulty in fusing
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high-level semantic features, which can be effectively avoided in the future by using feature-level
fusion.

Future research will focus on feature-level fusion of RGB images and depth images based on
YOLOv8-pose, modifying the network architecture of YOLOv8-pose to dual-branch feature
extraction, performing cross-modal feature fusion based on the attention mechanism, and imitating
the original network to perform cross-scale feature fusion, with the aim of realizing a more accurate
and fast pilot behavior detection.
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