
Enhancing face recognition accuracy using data pre-
processing method and YOLO

Yuhan Liu
Department of Statistics, Columbia House, Houghton Street, London, WC2A 2AE

y.liu253@lse.ac.uk

Abstract. The recognition of objects is an essential aspect of visual perception and finds
extensive usage in diverse fields such as self-driving vehicles, security, robotics, and image
retrieval. In this study, we investigate the performance of the YOLOv5 (You Only Look Once)
algorithm for object detection on the VOC2007 dataset. The YOLOv5 model achieved a
moderate overall accuracy and precision, demonstrating its potential for object detection tasks.
However, the performance varied across different categories, with lower accuracy observed for
less frequent categories and difficulties in distinguishing between closely related categories.
We identify potential improvements to the YOLOv5 model's performance, including class
balancing using weighted sampling and data augmentation, which may help the model to better
learn to detect objects from under-represented categories and improve its ability to distinguish
between similar objects. The results of our study imply that the YOLO algorithm has potential
for object detection and classification projects in computer vision, however further study and
refinement are necessary to broaden its efficacy across a greater variety of object classes and
real-world scenarios.

Keywords: object detection, deep learning, yolo, data pre-processing.

1. Introduction
The identification of objects is a fundamental aspect of visual perception and has wide-ranging
practical applications, such as in the field of autonomous vehicles, surveillance, robotics, and image
retrieval. Improving the accuracy of object detection algorithms can lead to significant advancements
in these applications and contribute to the development of more intelligent and efficient systems.

In recent years, tremendous strides have been made in the field of object detection. In the past,
manual features and basic learning techniques were primarily used, but have since been supplanted by
more sophisticated approaches such as Convolutional Neural Networks (CNNs) [1]. Recent object
detection algorithms, such as R-CNN [1], and Faster R-CNN [1], have exhibited exceptional results in
a wide range of object detection tasks. Despite their complexity, these techniques may not be suitable
for immediate use due to their resource-intensive nature.

This research suggests YOLO (You Only Look Once) [2] as a viable algorithm for object detection,
as it has proven to be both accurate and efficient. The YOLO algorithm achieved an overall accuracy
of 53.2% on the VOC 2007 dataset [3], with an average precision (AP) of 48% and a mean average
precision (mAP) of 47.3% at an IoU threshold of 0.5 [4].

This paper is structured as follows: We begin with a description of the YOLO algorithm, including

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230291

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

649



its model architecture and parameter tuning. Next, we present our experimental setup, detailing the
dataset, pre-processing techniques, and evaluation metrics. We then report the results of our
experiments, followed by a discussion of the algorithm's performance and potential improvements. We
end by summarizing our discoveries and outlining potential areas for future study.

2. Method

2.1. Data description
The dataset has a variety of images with different dimensions and proportions, totalling 9963. This
dataset encompasses 20 distinct types of objects, including transportation, animals, people and
household items. The dataset is divided into three sections: 5011 images in the training set and 4952
images in the test set. The training and validation data are utilized for teaching the model and tweaking
the hyperparameters, whereas the test set is applied to evaluate the model's efficacy. Every photograph
is marked with boundaries of the objects present and their respective categories.

2.2. Data pre-processing
To prepare the data for the YOLOv5 algorithm, several preprocessing steps are performed. These steps
include normalization, resizing, and class balancing using weighted sampling.

2.2.1. Normalization. To improve the performance and convergence of the YOLOv5 model,
normalization is applied to the input images [5]. This step involves scaling the pixel values of the
images from their original range (0-255) to a range of (0-1). Normalization helps the model to learn
more efficiently by ensuring that the input features are on the same scale [5].

2.2.2. Resizing. The input images in the VOC2007 dataset have varying sizes. However, the YOLOv5
model requires a fixed input size for efficient processing [2]. Therefore, the images are resized to a
consistent size, typically 416x416 or 640x640 pixels, before being fed into the model. Resizing
ensures that the model can process images of different dimensions while maintaining a uniform input
size.

2.2.3. Class balancing (weighted sampling). In the VOC2007 dataset, some object classes are more
frequent than others, which may lead to a biased model that performs poorly on less frequent classes.
To address this issue, class balancing using weighted sampling is implemented during training.
Weighted sampling assigns a higher sampling probability to under-represented classes, allowing the
model to see more examples of these classes during training. This approach helps to balance the
distribution of the classes and ensures that the model learns to detect all object categories equally well
[6].

2.3. YOLOv5

2.3.1. YOLO description. The YOLO (You Only Look Once) algorithm has become well-known for
its superior accuracy and rapidity, making it an attractive choice for real-time object detection [2]. We
employ YOLOv5 in our setup, taking advantage of its advancements on previous YOLO models and
thus boosting its efficacy.

2.3.2. YOLO model architecture. The YOLOv5 model architecture consists of multiple layers
designed for efficient object detection. In our implementation, we adjust the model to work with 20
object categories from the VOC2007 dataset. The architecture can be divided into three main
components: the backbone, the neck, and the head.

 Backbone: In YOLOv5, the backbone is based on CSPNet [7] and is responsible for efficient
feature extraction. We use the optimal depth and width multipliers of 0.33 and 0.2, respectively, to

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230291

650



balance model complexity and computational efficiency.
● Neck: YOLOv5 uses PANet (Path Aggregation Network) [8] in its neck, enabling it to merge

multi-scale features and enhance its capacity to identify objects of various sizes.
● Head: In YOLOv5, the head has separate output layers for detecting objects at different scales.

We modify the default number of classes in the head from 80 to 20 to match the VOC2007 dataset .

2.3.3. YOLO parameter tuning. The process of parameter tuning for the YOLO algorithm involves
adjusting various hyperparameters to optimize model performance. In our implementation, we use the
following hyperparameter values:

● Learning rate: 0.001, which allows for a balance between the convergence speed and the risk
of overshooting the optimal solution.

● Batch size: 16, which is a compromise between the memory requirements and the stability of
gradient estimates.

● Epochs: 10, which was determined to be an appropriate number of passes through the entire
training dataset, balancing the risk of overfitting and underfitting.

● Weight decay: 0.0005, which including a penalty term to the loss function that promotes
smaller model weights, the weight decay is utilized to combat overfitting.

We employed strategies like grid search and random search [9] to find the optimal hyperparameter
combination for the VOC2007 dataset and object detection task.

2.4. Evaluation metrics

2.4.1. Accuracy. The accuracy of YOLO can be gauged by comparing the predicted labels and
boundaries of objects to the known labels and boundaries in the testing dataset. The accuracy can be
determined by dividing the amount of correct predictions (a1 and a2) by the total predictions made (A),
as in equation (1).

��������(�) = �1+�2
�

(1)

2.4.2. Precision. The Precision of the predicted objects can be determined by the proportion of them
that are correctly identified. One way to calculate the outcome is by dividing the number of correctly
identified positives (TP) by the sum of correctly identified positives and falsely identified positives
(FP), as in equation (2).

�������� = ��
��+��

(2)

2.4.3. True Positive Rate (TPR). The YOLO algorithm's accuracy is assessed by TPR, which is the
proportion of actual positive objects that are accurately identified. The calculation is done by dividing
the amount of correct identifications (TP) by the total of correct identifications and incorrect rejections
(FN), as in equation (3).

���� �������� ���� ��� = ��
��+��

(3)

2.4.4. Confusion Matrix. The confusion matrix is a type of chart that outlines the number of accurate
positives (TP), accurate negatives (TN), erroneous positives (FP), and erroneous negatives (FN) for
each category. This matrix offers an understanding of the model's capacity to differentiate between
multiple object classes and accurately identify objects.

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230291

651



3. Results

3.1. Model performance
After training the YOLOv5 model using the VOC2007 dataset, the results were obtained as shown in
Fig 1.

Figure 1. Example of result.

3.1.1. Overall performance. The model achieved an overall accuracy of 53.2% on the test set, with an
average precision (AP) of 48% and a mean average precision (mAP) of 47.3% at IoU threshold of 0.5
as shown in Fig 2.. The data from the VOC2007 dataset shows that the model can be further improved
in its ability to recognize objects from various categories.

Figure 2. mAP@0.5.

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230291

652



3.1.2. Category-wise performance. The model's performance varied across different object categories.
The highest precision was achieved for the "person" category at 80%, followed by the "car" category
at 78.1%. The lowest precision was observed for the "dining table" and "sofa" categories at 14.1% and
11.2%, respectively

3.2. Confusion Matrix analysis
The results of the confusion matrix as shown in Fig 3. suggested that the model was quite successful in
distinguishing between "person" and "car" categories, likely because the training set contained a larger
quantity of samples for these classes as shown in Fig 4.. However, the model struggled with detecting
"dining table" and "sofa" categories, which had relatively lower detection accuracy and were often
mistaken as background.

Moreover, the model misclassified some "bus" instances as "car" or "train" due to their similarities,
suggesting that the model has difficulties in distinguishing between closely related categories.

Figure 3. Confusion matrix of results.

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230291

653



Figure 4. Label frequency and parameter graph.

3.3. Precision curve
The precision curve as shown in Fig 5. showed that "person" and "car" categories had better
performance than the average level, whereas "dining table" and "sofa" categories were below the
average line. The "bus" category exhibited a noticeable drop between 0.4-0.5 confidence levels,
followed by an upswing at higher confidence levels.

Figure 5. Persian curve of results.

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230291

654



This pattern suggests that the classifier is making mistakes when predicting the positive class at
intermediate confidence levels but is able to recover and achieve high precision at higher confidence
levels. It also indicates that the classifier struggles to distinguish between positive and negative
examples that are very similar in appearance, such as "car" and "bus".

In conclusion, the YOLOv5 model achieved a moderate overall accuracy and precision in detecting
objects in the VOC2007 dataset. However, the performance varied across different categories, with
lower accuracy observed for less frequent categories such as "dining table" and "sofa". Additionally,
the model had difficulties in distinguishing between closely related categories like "car" and "bus".
Further improvements can be made by incorporating additional training data for underrepresented
categories and refining the model to better distinguish between similar objects [4].

4. Discussion
YOLO algorithm achieved moderate performance on the VOC 2007 dataset. A mAP of 47.3%
indicates that the algorithm was able to accurately detect and classify objects in some images but
struggled in others. A variety of elements, such as the object classes spread throughout the dataset, the
annotations' accuracy, and the hyperparameters utilized for teaching the model, may have had an effect
on the algorithm's execution.

The imbalance in the number of classes of objects in the dataset could be the cause of the
algorithm's poor performance. Some object classes, such as "person" and "car", were over-represented
in the dataset, while others, such as "bottle" and "cow", were under-represented. This imbalance can
make it difficult for the algorithm to learn to detect and classify objects from the under-represented
classes, leading to lower performance [10].

To address this issue, class balancing techniques such as weighted sampling can be used to assign
higher weights to the examples from the under-represented classes during training [10]. This can
enhance the algorithm's proficiency in dealing with the classes that are underserved, and guarantee that
the algorithm is capable of managing items from a broad assortment of classes.

One alternative method for boosting the algorithm's efficiency for minority classes is to increase
the amount of data. This requires creating novel samples from the pre-existing ones through arbitrary
alterations like trimming, flipping, and turning [11]. Augmenting data can assist in enlarging the data
set and making the model more robust, thus simplifying the process of the algorithm recognizing
objects that are not often seen.

In summary, the YOLO method demonstrates considerable promise in the realm of object detection
and categorization tasks. Nonetheless, additional investigation is required to enhance its efficacy on
object classes that are less represented. With the use of class balancing techniques and data
augmentation, it may be possible to train the algorithm to detect and classify objects from a wider
range of classes with higher accuracy.

5. Conclusion
This research has investigated the application of YOLOv5 for identifying objects in the VOC2007
dataset. The model achieved a moderate overall accuracy and precision, indicating its potential for
object detection tasks. However, the performance varied across different categories, with lower
accuracy observed for less frequent categories such as "dining table" and "sofa". Additionally, the
model had difficulties in distinguishing between closely related categories like "car" and "bus".

We have pinpointed various strategies to help enhance the YOLOv5 model's performance on this
dataset, like employing weighted sampling to balance classes and data augmentation. These techniques
may help the model to better learn to detect objects from under-represented categories and improve its
ability to distinguish between similar objects.

To sum up, the YOLO algorithm has the potential to be effective in detecting and labelling objects
in computer vision projects. Further research and improvements can be made to increase its
performance on a wider range of object classes, leading to advancements in fields such as autonomous
vehicles, surveillance, robotics, and image retrieval. Subsequent research may investigate the

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230291

655



combination of the YOLO algorithm with other leading-edge approaches to augment its effectiveness
and usability in practical settings.

References
[1] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with

region proposal networks," in Advances in Neural Information Processing Systems, pp. 91-
99, 2015.

[2] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A, You only look once: Unified, real time
object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779-788, 2016

[3] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A, The PASCAL
Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html, 2007

[4] Goodfellow, I., Bengio, Y., & Courville, A.. Deep learning. MIT Press, 2015.
[5] Krizhevsky, A., Sutskever, I., & Hinton, G. E, ImageNet classification with deep convolutional

neural networks. In Advances in Neural Information Processing Systems, pp. 1097-1105,
2012.

[6] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P, Focal loss for dense object detection. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 2980-2988, 2017.

[7] Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H, CSPNet: A
new backbone that can enhance learning capability of CNN. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390-39,
2020.

[8] Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J, Path aggregation network for instance segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
8759-8768, 2018.

[9] Bergstra, J., & Bengio, Y, Random search for hyper-parameter optimization. Journal of
Machine Learning Research, pp.281-305, 2012.

[10] C. Drummond and R.C. Holte, "C4.5, class imbalance, and cost sensitivity: Why under-
sampling beats over-sampling," Workshop on Learning from Imbalanced Datasets II, 2003.

[11] P. Domingos, "A Few Useful Things to Know About Machine Learning," Communications of
the ACM, vol. 55, no. 10, pp. 78-87, 2012.

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230291

656


