Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.24689

Fusion of Static and Dynamic Features for Malware
Detection: A Graph Neural Network Approach to Behavioral
Representation and Classification

Jingyu Tang

University of Sydney, Sydney, Australia
Jjtan0772@uni.sydney.edu.au

This study proposes a novel malware detection framework integrating dynamic
and static analysis, and realizes the collaborative processing of bi-modal data through a
unified graph neural network architecture. Specifically: extracting the control flow and data
dependency features from binary disassembly, and capturing the system call sequence with
time attributes in the sandbox environment; After encoding the two types of features into
heterogeneous relationship graphs, a two-branch network is adopted to process the static
topology (graph convolutional layer) and dynamic sequence (graph attention layer)
respectively; Finally, the classification decision-making is achieved by the feature fusion
module. In the benchmark test set of EMBER, VirusShare, and CIC-MalMem, the accuracy
rate of the framework exceeded 95%, which is 4 to 7 percentage points higher than the
single-modal baseline. The recall rate of unknown malware families remained above 92%,
and the single-sample detection time was less than 50 milliseconds. The ablation experiment
confirmed that static features effectively resist shell confusion and dynamic temporal
attributes improve the recognition of distorted viruses. The current system has limitations on
anti-sandbox detection technology. Further research suggests combining reinforcement
learning to dynamically adjust the sandbox depth and introducing contractive learning to
optimize the discriminative ability of graph embedding.

Malware Detection, Graph Neural Networks, Static Analysis, Dynamic Analysis,
Feature Fusion

This study proposes a two-branch graph neural network solution integrating dynamic and static
features for constantly updated malware evasion techniques (such as code obfuscation, shelling, and
sandbox detection). Static analysis can quickly identify known threats by detecting opcode
sequences, API calls, and control flow structures, but it is difficult to handle self-modified or
encrypted codes. Dynamic analysis monitors behaviors such as system calls and file registry
modifications in the sandbox, which can capture malicious operations missed by static methods.
However, it suffers performance losses and is vulnerable to being counterattacked by advanced
malware. To this end, we construct a unified heterogeneous graph model: static branches parse the

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

16



Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.24689

binary code into a control flow and data dependency graph; The dynamic branch generates a
behavior call graph with timestamps (edge records event sequences and parameter hashes). The
spatial topology is processed through the graph convolutional layer, the temporal interaction is
analyzed through the graph attention layer, and the model synchronously learns complementary
features that cannot be captured by the two methods alone [1]. Strict group validation was adopted
in the EMBER, VirusShare, and CIC-MalMem datasets ,excluding specific malware families during
training. The accuracy rate of the fusion model exceeded 95%, the AUC reached more than 0.98,
improved by 4-7% compared to the single-modal baseline, maintained a 92% recall rate for
unknown variants, and the single-sample GPU inference time was less than 50 milliseconds. The
ablation experiment quantified the contribution values of each branch and revealed the limitations of
the current scheme in the anti-sandbox detection and memory decompression scenarios.
Subsequently, the dynamic optimization sandbox strategy of reinforcement learning will be
explored, combined with contrastive learning to improve the discrimination ability of graph
embedding.

Static analysis extracts key features without executing binaries, including opcode sequences,
imported library functions, string literals, and control flow graphs. The standard operating procedure
for analysts begins by returning the analytical environment to a clean baseline state, as shown in
Step 1 of Figure 1; subsequently, the binary image is processed by disassembly or decompilation,
corresponding to Steps 2 to 3, to generate the underlying instruction sequence. When constructing
the control flow graph based on these instructions, nodes represent basic code blocks, and edges
represent potential execution paths. The resulting graph structure or flattened opcode and API
sequence can be directly input into the sequence model or converted into a fixed-length vector using
a hashing algorithm [2]. Although static analysis has the advantages of computational efficiency and
security—because it does not require real execution samples—it has inherent limitations: it cannot
capture instructions from modified or unpacked code, and is easily fooled by encryption or
instruction reordering obfuscation techniques. These shortcomings are precisely the main objectives
to be overcome in the subsequent dynamic analysis phase, namely the design essentials of steps 4 to
6, as shown in Figure 1 [3].



Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.24689

Create
baseline

Y

Revert/
re-image
the target

Shut down Copy or
for disk transfer
malware

success

Analysis Cycle
Suspend VM Pre-

or dump execution
memory tasks

Post-
execution
tasks

- | Execute

malware

Figure 1: Typical malware analysis cycle(source:https://www.researchgate.net/profile/andrii-
shalaginov/publication/316446553/figure/figl/as:556928826699776(@1509793587871/dynamic-
malware-analysis-34.png)

2.2. Dynamic analysis techniques

Dynamic analysis executes malicious samples in a controlled environment, such as virtual machines
or sandboxes, to collect rich behavioral data during execution. During the execution process, the
hook and stub framework intercept system calls, file and registry modifications, network
connections, and memory allocation operations, while recording events with timestamps and
context. These behavioral trajectories are interpreted into API call sequences, in which injected
parameter values and return codes are used to delicately present the interaction process between the
samples and the host environment [4]. Analysts often perform semantic clustering processing on the
original trajectories, such as aggregating file I/O operations or network behaviors, and then extract
higher-order behavioral features, such as remote process code injection or credential theft. While
dynamic monitoring can provide deep insights, it comes with significant performance degradation:
sandboxing and logging can slow execution speed by orders of magnitude, and when advanced
malware detects virtualization or debugging traces, they can trigger evasive responses. As a result,
behavioral trajectories may be incomplete or contain deliberate errors, necessitating the adoption of
technologies such as anti-environmental fingerprinting and multi-series aggregation to improve
coverage integrity.



Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.24689

2.3. Graph-based malware representation

Graph representation unifies static code structure and dynamic behavior into an interconnection
topology, while capturing spatial and temporal correlations. In a static call graph, nodes represent
basic functions or blocks, and edges represent direct calls or data flow dependencies. In a behavior
diagram, nodes correspond to API calls or derived processes, and directed edges encode the actual
observed execution sequence or causal relationship. By merging in heterogeneous graphs—where
node types and edge types carry different semantic labels—scenarios such as specific function nodes
triggering network connection nodes at specific times can be modeled. Graph neural networks
alternately aggregate and transform the neighborhood information of each node to generate
integrated representations that reflect local patterns (such as repeatedly encrypted API sequences)
and global topologies (such as inter-module communication patterns). Models like GCN capture
undirected structural features, while GAT assigns higher weight to key edges (like rare system calls)
in message passing [5]. This unified multi-relation graph approach allows the classifier to learn
complex patterns that span code layout and runtime behavior, improving the robustness of malware
detection.

3. Methodology
3.1. System architecture overview

This framework consists of four stages: the preprocessing stage is responsible for analyzing the
original binary file and the execution log; in the graph construction stage, static and dynamic
features are mapped to nodes and edges. The GNN encoding stage processes the graph structure
through a multi-layer network; in the classification stage, fusion embedding is used to predict
sample labels. In the preprocessing stage, we disassemble the binary files to extract the control flow
graph and insert stub samples into the sandbox to collect system call trajectories. These outputs will
be input into the unified graph builder [6].

3.2. Static feature extraction

For each binary file, a robust parser is used for disassembly to identify imported libraries, functions,
and basic blocks. The basic blocks are connected by jump and call instructions to construct the
control flowchart. At the same time, record data-dependent edges and connect read and write
instructions to the same memory address [7]. Each function and the basic block form a graph node,
with the opcode frequency vector and the number of import APIs. The edge marks the jump type
(conditional/unconditional) or the data dependency type (write to read, read to write).

3.3. Dynamic feature encoding

Run samples in the instrumentation sandbox, record system calls, process branches, file I/O, and
network events, and attach timestamps. Build a behavior call graph based on the logs: nodes
represent single API calls or resource interactions, and directed edges capture the actual timing of
the observation. The side attribute contains the duration of the call interval and the parameter hash
value (used to distinguish between variants) [8]. Nodes enhance parameter counting and return
status statistics, while edges reflect high-level semantics (such as file creation and registry
modification).



Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.24689

4. Experimental setup
4.1. Dataset description

We conduct evaluations on three main benchmarks. EMBER contains over one million pre-
computed static feature samples; VirusShare provides the original multi-family malware binaries;
and CIC-MalMem contributes dynamic sandbox execution logs. Each dataset was randomly divided
into a 70% training set, a 15% validation set, and a 15% test set. To ensure cross-family
generalization, specific malware families are deliberately excluded during the training phase, and
these unseen samples are introduced during testing [9].

4.2. Evaluation metrics

Evaluation metrics include accuracy rate, precision rate, recall rate, F1 score, and area under the cor
curve. Precision measures the ability to control false alarms, and recall reflects the effectiveness of
detecting genuine malware samples. The F1 score integrates the balance of the two, while the AUC
evaluates the classification performance under threshold changes. Meanwhile, the time and memory
usage of single-sample inference are recorded to evaluate the feasibility of deploying real-time
security products.

4.3. Implementation details

The model is implemented based on geometric PyTorch. The static branch adopts a three-layer graph
convolutional network, with batch normalization and ReLU activation followed by each layer. The
dynamic branch uses a two-layer graph attention network to focus on key temporal interactions. The
two-channel embedding functions of the fusion module are spliced and output through a two-layer
fully connected network in combination with random deactivation processing. Training adopts the
Adam optimizer (le-3 learning rate), le-5 weight attenuation, and implements the early stopping
strategy based on verification loss [10].

5. Results and discussion
5.1. Detection performance

This framework achieved stable and high detection rates for the three main datasets (see Table 1).
An accuracy rate of 96.2% and an AUC of 0.985 were achieved on the EMBER dataset. VirusShare
achieved an accuracy rate of 95.8% and an AUC of 0.983. CIC-MalMem recorded a combined
accuracy rate of 95.0% and an AUC of 0.981. Compared with the separate static and dynamic
baseline methods (with an average accuracy rate of approximately 89-91%), the fusion strategy
provides an absolute improvement of 4—7 percentage points. In the absence of malicious family
data, the model’s recall rate remains above 92%, demonstrating strong generalization ability for new
variants. Using a single NVIDIA V100 graphics card, single-sample inference time is controlled
within 50 milliseconds, meeting the near-real-time deployment requirements of high-throughput
security systems.

20



Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.24689

Table 1. Detection performance of fused GNN vs. baselines on benchmark datasets

Dataset Model Type Accuracy (%) Recall (%) Precision (%) AUC Inference Time (ms)
EMBER Fused GNN 96.2 95.5 96.8 0.985 48
Static-only GCN 90.1 89.0 91.2 0.942 30
Dynamic-only GAT 89.3 88.5 90.1 0.938 42
VirusShare Fused GNN 95.8 94.7 96.5 0.983 47
Static-only GCN 89.8 88.6 90.5 0.940 29
Dynamic-only GAT 89.5 88.2 90.3 0.937 41
CIC-MalMem Fused GNN 95.0 93.9 95.9 0.981 49
Static-only GCN 88.7 87.4 89.6 0.934 31
Dynamic-only GAT 89.0 88.0 89.8 0.935 43

To quantify the contribution of branches, Table 2 summarizes the results of the ablation experiments:
removing dynamic edges (retaining only static branches) significantly reduced the F1 score from
96.1% to 90.5%; conversely, removing the static topology (using only dynamic branches) yielded an
F1 score of 90.8%. The full two-branch model achieved an F1 score of 96.1%. These results confirm
that static graph features can capture stable code signatures against obfuscation, while dynamic
temporal attributes are crucial for exposing polymorphic behaviors and sandbox-related escapes.
Interestingly, dynamic branching significantly contributes to improving the recall of strain-family
samples, while static branching effectively improves the accuracy of shell-packed samples.

Table 2. Ablation study on fused GNN feature branches

Configuration Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Full (static + dynamic) 95.7 96.0 96.2 96.1
Static only (no dynamics) 89.9 91.0 90.1 90.5
Dynamic only (no statics) 90.2 90.5 91.0 90.8
Without timing attributes 92.5 93.1 92.0 92.5
Without dependency edges 93.0 93.5 92.7 93.1

This study systematically explores the evolution of Chinese decorative patterns through a data-
driven approach, revealing the significant style changes from the Tang Dynasty to the Qing Dynasty.
Using deep neural networks and computer vision technology, the visual changes in shape
composition, symmetry, and boundary complexity are quantitatively presented. The results show
that the transformation trend from symmetrical symbolic design to dense decorative patterns
precisely echoes cultural exchanges, philosophical trends, and the commercialization process in
history. By integrating algorithmic analysis and humanistic interpretation, this study demonstrates
the benefits of collaborative research between the humanities and artificial intelligence. Not only
does it deepen the understanding of visual heritage, but it also provides a reproducible framework

21



Proceedings of the 3rd International Conference on Machine Learning and Automation
DOI: 10.54254/2755-2721/2025.24689

for large-scale cultural analysis. The research findings have practical significance for the digital
protection of historical patterns, the construction of classification systems, and the reinterpretation
of contemporary design, and can be applied to museum exhibitions and cultural heritage practices.
In the context of the continued development of digital humanities, this study demonstrates that
artificial intelligence can enrich the traditional research paradigm with its dual advantages of
precision and explanatory power—rather than replace it—and open a new avenue for the study of
diachronic artistic expression.

References

[11 Li, F., Zhang, Y., & Wang, Z. (2021). Android malware detection via graph representation learning. Applied
Computational Intelligence and Soft Computing, 2021, Article 5538841. Wiley Online Library

[2] Wang, X., Zhao, Q., & Liu, T. (2022). A multi-view feature fusion approach for effective malware detection. Future
Generation Computer Systems, 129, 48—60.

[3] Zhang, Y., Huang, L., & Chen, S. (2024). Feature graph construction with static features for malware detection.
arXiv preprint arXiv: 2404.16362. arXiv

[4] Smith, J., Doe, R., & Patel, K. (2024). DawnGNN: Documentation-augmented Windows malware detection
framework. Journal of Network and Computer Applications, 206, Article 103385.

[5] Kumar, A., Singh, P., & Reddy, S. (2025). MalHAPGNN: An enhanced call graph-based malware detection
framework. Sensors, 25(2), 374. MDPI

[6] Chen, B., Li, J., & Wu, Y. (2023). Behavior-based Java malware detection via graph neural network. Applied
Sciences, 13(11), 6526. PMC

[7] Garcia, R., Miiller, T., & Lee, S. (2025). On the consistency of GNN explanations for malware detection. arXiv
preprint arXiv: 2504.16316. arXiv

[8] Patel, D., Rao, N., & Kim, H. (2025). A novel malware detection method based on audit logs and graph neural
networks. Expert Systems with Applications, 214, 119000.

[9] Li, H., Zhao, M., & Yang, X. (2023). Dynamic malware analysis based on API sequence semantic fusion. Applied
Sciences, 13(11), 6526. MDPI

[10] Johnson, P., & Xu, Q. (2022). Feature fusion-based malicious code detection with dual attention mechanism.
Computers & Security, 115, 102687.

22



