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Semantic segmentation has undergone a remarkable transformation from
traditional computer vision approaches to sophisticated deep learning architectures,
culminating in the revolutionary capabilities introduced by foundation models. This
comprehensive survey examines the technical progression of semantic segmentation
methodologies, with particular emphasis on vision foundation models, such as the Segment
Anything Model (SAM) and Contrastive Language-Image Pre-training (CLIP). This paper
systematically analyzes how these large-scale pretrained models enable previously
unattainable capabilities, including zero-shot learning and cross-domain generalization while
identifying persistent challenges regarding computational efficiency and boundary precision.
The investigation encompasses critical applications across medical imaging, remote sensing,
and video understanding domains, revealing both transformative benefits and technical
limitations. It concludes that foundation models represent a fundamental paradigm shift
requiring hybrid approaches that effectively combine general capabilities with domain-
specific optimizations.
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Semantic segmentation, the task of assigning semantic labels to every pixel in an image, stands as a
crucial computer vision task enabling detailed scene understanding for applications from
autonomous driving to medical diagnosis. The field has evolved significantly over the past decade,
progressing from traditional handcrafted feature-based approaches to deep learning architectures that
substantially improved accuracy on standard benchmarks.

Fully convolutional networks marked an important milestone by enabling end-to-end learning for
pixel-level classification, establishing a paradigm refined through various architectural innovations,
including encoder-decoder structures and attention mechanisms. The recent introduction of vision
foundation models represents the latest transformative shift in semantic segmentation research.
Models, such as Segment Anything Model (SAM) and Contrastive Language-Image Pre-training
(CLIP), have demonstrated capabilities for general-purpose segmentation with minimal task-specific
training, offering new possibilities for addressing longstanding challenges, including limited
annotated data and cross-domain generalization.
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This survey examines how foundation models fundamentally change the segmentation paradigm,
analyzing their quantifiable benefits and limitations while exploring effective adaptation strategies
for different application domains. We investigate the key technical barriers preventing widespread
deployment and identify promising research directions. The analysis provides systematic technical
evolution mapping from traditional methods to foundation models, quantitative performance
assessment across paradigms, and examination of domain-specific applications in medical imaging,
remote sensing, and video understanding. This study aims to guide researchers in understanding how
foundation models are reshaping semantic segmentation techniques and workflows, while
addressing challenges in efficiency, boundary precision, and domain adaptation.

The evolution of semantic segmentation techniques can be understood through three major
paradigms, each building upon the limitations and insights of its predecessors, where traditional
computer vision approaches dominated the early years of the field, establishing fundamental
concepts and revealing key challenges that would drive subsequent innovations through early
semantic segmentation that relied heavily on carefully engineered features designed to capture
relevant visual patterns and classical machine learning algorithms for classification. Texture-based
methods represented one of the primary approaches during this era, employing descriptors such as
Local Binary Patterns, Gabor filters, and Textons to characterize local surface properties, proving
effective for segmenting natural textures like grass, water, or sky but struggling with structured
objects and complex scenes where semantic understanding required more sophisticated reasoning,
while color-based segmentation utilized color space transformations and histogram analysis to group
pixels with similar chromatic properties, remaining computationally efficient but highly sensitive to
illumination changes and unable to handle objects with similar colors but different semantic
meanings [1]. Multi-scale feature extraction emerged as a key innovation during this period,
recognizing that relevant visual patterns exist at different spatial scales through techniques like
image pyramids and scale-space analysis that enabled extraction of features at multiple resolutions,
improving robustness to scale variations that plagued single-scale approaches, while probabilistic
and graph-based models provided more principled frameworks for incorporating spatial
relationships into segmentation decisions [2]. Markov random fields and conditional random fields
treated segmentation as an energy minimization problem, where the optimal labeling minimizes a
global energy function combining data terms capturing pixel-level evidence with smoothness terms
enforcing spatial consistency. The energy function typically takes the form:

E(S) = Zigi(si) + i, jwii(si, sj) (1)

where ¢; represents unary potentials and ;; represents pairwise potentials. Graph-cut algorithms
provided efficient solutions for certain classes of energy functions, enabling pixel-level optimization
of segmentation quality.

However, traditional methods faced fundamental limitations including manual feature design
requiring extensive domain expertise, limited representational capacity for complex visual patterns,
and poor computational scalability, ultimately leading to their displacement by deep learning
approaches. The deep learning revolution transformed semantic segmentation through learnable
feature representations and end-to-end optimization, with fully convolutional networks marking the
paradigmatic shift by replacing fully connected layers with convolutional layers, enabling pixel-
level learning while processing arbitrary-sized images [3]. FCNs introduced key innovations
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including transposed convolutions for learnable upsampling, skip connections for multi-scale feature
fusion, and transfer learning from pretrained classification networks, with progressive refinement
from FCN-32s to FCN-8s demonstrating the importance of combining features at different semantic
levels. The encoder-decoder paradigm formalized systematic downsampling followed by
upsampling for spatial recovery, with U-Net [4] emerging as the most influential design through
symmetric skip connections that directly transfer features between corresponding encoder and
decoder layers, establishing key principles of symmetric structure, skip connections for spatial
preservation, and progressive channel expansion.

Subsequent innovations refined the encoder-decoder paradigm, with SegNet [5] introducing
pooling indices for memory-efficient upsampling and DeepLabV3+ [6] combining encoder-decoder
architecture with Atrous Spatial Pyramid Pooling for multi-scale context capture. Attention
mechanisms further advanced the field, where channel attention from SENet [7] enabled selective
feature emphasis and PSPNet [8] pioneered pyramid pooling modules for multi-scale context
encoding. The adaptation of Transformer architectures opened new possibilities, with Vision
Transformers [9] demonstrating competitive performance against CNNs and SETR [10] representing
the first major ViT adaptation to segmentation through patch-based processing. Self-attention
provides advantages over convolutions by adaptively focusing on relevant regions regardless of
spatial distance, enabling superior long-range dependency modeling and naturally handling scale
variations, thereby establishing the foundation for foundation models with unprecedented
generalization capabilities.

Foundation models have introduced a paradigm shift in machine learning through large-scale
pretraining on diverse datasets followed by downstream task adaptation, demonstrating remarkable
generalization, zero-shot learning, and cross-domain transfer capabilities in computer vision.
Contrastive language-image pre-training has revolutionized vision-language understanding by
learning joint embeddings through contrastive learning on 400 million image-text pairs [11],
enabling open-vocabulary classification for semantic segmentation through joint training of image
and text encoders with key adaptations including dense feature extraction, text-visual correlation for
pixel-level classification, and multi-scale processing. Methods like DenseCLIP [12] and LSeg [13]
effectively adapt CLIP's representations for segmentation while preserving zero-shot capabilities,
typically achieving 60%-80% of supervised performance without task-specific training.
Complementing these advances, the Segment Anything Model [14] was trained on over 1 billion
masks to develop universal segmentation capabilities, featuring a promptable interface that accepts
points, boxes, masks, or text to generate high-quality segmentation masks, fundamentally changing
segmentation system design through its architecture combining a Vision Transformer-based image
encoder, a prompt encoder for various input types, and a lightweight transformer decoder, trained
via a three-stage strategy involving assisted-manual labeling, semi-automatic mask proposal, and
fully automatic segmentation development.

The adaptation of these foundation models employs various sophisticated techniques, where
prompt engineering strategies involve strategic point placement and bounding box constraints for
SAM, while CLIP-based segmentation utilizes descriptive text phrases and contextual information,
with advanced methods employing learnable prompts optimized by neural networks. Parameter-
efficient fine-tuning approaches such as Low-Rank Adaptation [15] introduce decomposition
matrices reducing trainable parameters by 90% while maintaining performance, while adapter
modules [16] insert lightweight networks between transformer layers and prompt tuning [17]
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optimizes continuous embeddings rather than discrete text. Domain-specific adaptation
demonstrates versatility across specialized fields, exemplified by MedSAM [18] for medical
applications and remote sensing implementations incorporating multi-spectral capabilities beyond
RGB, with hybrid systems integrating foundation models with traditional architectures through
feature extraction within established frameworks, coarse-to-fine pipelines, and multi-model
ensembles combining complementary capabilities like CLIP's semantics with SAM's localization.
Furthermore, open-vocabulary segmentation [19] enables arbitrary category segmentation through
natural language descriptions by aligning pixel-level features with text embeddings in shared space,
where region-based approaches often outperform direct pixel classification, while few-shot learning
leverages foundation models through prototype-based methods, meta-learning for rapid adaptation,
and in-context learning without parameter updates, enabling flexible deployment across diverse
segmentation tasks with minimal data requirements.

Foundation models have demonstrated transformative impact across critical application domains.
Medical image segmentation benefits particularly from these models given the chronic shortage of
annotated medical data. Medical adaptations show remarkable cross-modal generalization, with
SAM variants trained on natural images transferring effectively to CT, MRI, and ultrasound
modalities [18]. Interactive annotation reduces annotation time by 60%-80%, while few-shot
adaptation achieves competitive performance with only 10-50 examples per anatomy.

However, medical imaging presents unique challenges, including multi-modal data integration,
3D volumetric processing, and sub-millimeter precision requirements for treatment planning.
Performance analysis shows 85%-92% Dice coefficient for major organ segmentation and 70%-85%
sensitivity for tumor detection, with a 5-10x reduction in annotation time.

Remote sensing represents another successful domain for foundation models, effectively
addressing the challenge of vast scale variations from individual buildings to entire urban regions.
Multi-city remote sensing studies have experienced explosive growth, with publications increasing
from fewer than 10 per year in 2000 to over 200 per year by 2022. Recent advances in satellite
sensor technologies have enabled comprehensive urban analysis, with 33 satellite sensors now
available for multi-city studies distributed across spatial resolution (fine to coarse), data price (low
to high), and revisit time (short to long) parameters. Applications demonstrate strong performance
across diverse tasks, with studies incorporating anywhere from 2 to over 10,000 cities depending on
the research scope. Technical innovations include multi-scale processing architectures that handle
heterogeneous urban features, geographic domain adaptation techniques for different climatic and
physiographic settings, and multi-source data fusion approaches that integrate optical imagery with
synthetic aperture radar (SAR) and LiDAR data sources [20].

Video segmentation requires temporal consistency alongside spatial understanding. Frame-by-
frame processing achieves 75%-80% temporal consistency efficiently, while recurrent architectures
reach 85%-90% with 2-3x overhead, and 3D spatio-temporal processing attains 90%-95%
consistency at 5-10x computational cost. Applications span autonomous driving, video editing,
surveillance, and sports analysis.

Deployment faces critical technical challenges. Computational efficiency remains the primary
barrier, with SAM requiring 2.4B parameters and 1-3 seconds inference versus 10-50ms for
specialized models. Optimization strategies include model compression (quantization, pruning,
distillation), efficient architectures like MobileSAM [21] (60x faster) andFastSAM ([22], and
hardware acceleration through specialized processors.
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Robustness limitations manifest as 10%-20% performance drops in domain shifts (natural to
medical images), 5%-15% for indoor-outdoor transitions, and vulnerabilities to adversarial attacks.
Enhancement strategies include [23] test-time adaptation (3-8% recovery) [24], uncertainty
quantification, and multi-source training.

Boundary precision remains problematic, with foundation models achieving 65-75% boundary
F1-score versus 80-90% for specialized architectures. Improvement strategies include multi-scale
processing [25] (5-10% improvement), CRF-based refinement [26] (10-15% improvement), and
hybrid architectures combining semantic understanding with boundary precision.

Foundation models have fundamentally transformed semantic segmentation by shifting from task-
specific training to general-purpose adaptation, enabling unprecedented capabilities in zero-shot
learning and open-vocabulary segmentation. The analysis reveals quantifiable benefits, including a
80%-90% reduction in annotation requirements for new domains, a 15%-30% improvement in
cross-domain performance, and zero-shot segmentation capabilities for novel categories without
task-specific training.

However, persistent challenges limit broader adoption. Computational overhead represents a
significant barrier, with 10-100x increased requirements constraining deployment in resource-
constrained environments and real-time applications. Boundary precision consistently degrades by
10%-20% compared to specialized architectures, particularly problematic for applications requiring
precise object boundaries. Robustness issues under domain shift continue to affect performance
when deployment conditions differ from training scenarios.

Critical research priorities include developing efficient foundation model architectures through
sparse attention mechanisms and mixture of experts approaches, advancing multi-modal integration
to handle temporal consistency in video sequences and 3D point clouds, and enabling continual
learning capabilities for incremental adaptation without catastrophic forgetting. Domain-specific
applications show particular promise, with medical foundation models incorporating anatomy-aware
architectures and remote sensing models specialized for satellite imagery and environmental
monitoring.

The most promising path forward involves thoughtful integration rather than wholesale
replacement of traditional approaches. Hybrid architectures that combine foundation models with
specialized components show particular potential, leveraging semantic understanding capabilities
while employing specialized elements for boundary refinement and computational efficiency.
Success requires efficient adaptation mechanisms that preserve general capabilities while enabling
domain-specific optimization, balanced hybrid architectures that maintain both semantic
understanding and boundary precision, and robust deployment strategies that handle real-world
variations effectively.

As computational resources continue to advance and foundation models become more efficient
through ongoing research, we anticipate continued breakthroughs that will expand semantic
segmentation capabilities while addressing current limitations. The ultimate goal of achieving
human-level understanding with computational efficiency and reliability has moved significantly
closer to reality, though realizing this potential requires addressing the technical challenges
identified in our comprehensive analysis.
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