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Abstract. Existing algorithms for unmanned aerial vehicle (UAV) image object detection
often face challenges such as low detection accuracy for small objects and missed detections
of multi-scale objects. To address these issues, this paper proposes a UAV image object
detection algorithm that integrates a channel attention mechanism with parallel-structured
dilated convolution feature fusion. To enhance the algorithm’s feature representation
capabilities in terms of channel attention and receptive field, the ResNet50 backbone is
redesigned by incorporating the Squeeze-and-Excitation Network (SENet) and a Parallel-
Structured Dilated Convolution Feature Fusion Network (PSDCFFN). Additionally, Region
of Interest (ROI) Align is employed, and the Region Proposal Network (RPN) anchor sizes
are optimized using K-Means clustering to minimize coordinate deviations during object
regression. Experimental results demonstrate that the proposed algorithm significantly
improves object detection accuracy in UAV images. On the RSOD-Dataset and a custom
UAV image dataset, the mean Average Precision (mAP) reaches 92.52% and 98.07%,
respectively.
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1. Introduction

Unmanned aerial vehicles (UAVs) equipped with imaging devices have become critical tools in
various applications, including environmental monitoring, urban planning, and military
reconnaissance, due to their flexibility and ability to capture high-resolution aerial images [1].
However, UAV images present unique challenges for object detection, such as wide variations in
object scales, small object sizes, complex and cluttered backgrounds, and a high number of objects
[2]. These characteristics often lead to low detection accuracy and missed detections, particularly for
small and multi-scale objects, in traditional object detection algorithms [3, 4].

In recent years, convolutional neural networks (CNNs) have significantly advanced object
detection tasks, offering superior speed and accuracy compared to traditional methods [5]. Deep
learning-based object detection approaches are broadly categorized into two types: region proposal-
based methods, such as R-CNN [6], Fast R-CNN [7], and Faster R-CNN [8], and regression-based
methods, such as You Only Look Once (YOLO) [8] and Single Shot MultiBox Detector (SSD) [9].
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Region proposal-based methods generally outperform regression-based methods in terms of
detection accuracy, making them suitable for complex UAV image scenarios.

To address the specific challenges of UAV image object detection, researchers have proposed
various strategies. For instance, feature fusion mechanisms have been introduced to combine low-
level visual features with high-level semantic features to enhance multi-scale feature representation.
However, such approaches often increase model complexity and computational cost, slowing
detection speed. Other studies have modified YOLOv2 to fuse features extracted from input images
of different scales, improving detection accuracy for vehicle targets in UAV images, but at the cost
of increased computational complexity. For small object detection, methods such as enhancing low-
level features and increasing feature map resolution have been explored [10]. For example, replacing
VGG16 with a lightweight network in SSD reduced model parameters but struggled with objects
exhibiting wide scale variations [10]. Similarly, enhancements to Faster R-CNN with Flat-FPN and
soft-NMS improved small object detection but introduced significant computational overhead and
information loss due to multiple downsampling operations. Multi-scale pooling and deconvolution
have also been employed to improve small object detection, though they increase the number of
region proposals. To tackle complex backgrounds, attention mechanisms have been incorporated to
leverage inter-object correlations, yet their effectiveness remains limited for multi-scale objects [5].

To overcome these limitations, this paper proposes a novel UAV image object detection algorithm
based on Faster R-CNN, integrating a channel attention mechanism and parallel-structured dilated
convolution feature fusion. The proposed method enhances feature extraction by incorporating
SENet [11] and a custom-designed Parallel-Structured Dilated Convolution Feature Fusion Network
(PSDCFFN) into the ResNet50 backbone. Additionally, ROI Align is used to reduce localization
errors, and RPN anchor sizes are optimized via K-Means clustering to better adapt to UAV image
characteristics. Experimental results validate the effectiveness of the proposed algorithm in
improving detection accuracy for multi-scale and small objects in UAV images.

2. Preliminary knowledge

2.1. Faster R-CNN

Faster R-CNN [8] is a two-stage object detection framework that integrates a Region Proposal
Network (RPN) with a detection network. It employs VGG16 as the default feature extraction
backbone and uses a multi-task loss function for RPN, combining classification and regression
losses. The loss function is defined as follows:

where i denotes the index of an anchor,    is the predicted probability of the i-th anchor being an
object,    is the ground-truth label,    represents the predicted bounding box offsets,    is the
ground-truth offsets, Ncls and Nreg are the number of classification and regression samples,
respectively, and λ is a balancing parameter. The classification loss Lcls is a log-loss function, and
the regression loss Lreg uses the smooth L1 loss, defined as:

L({pi},{ti}) = 1
Ncls

∑i Lcls(pi, p∗
i) + λ 1

Nreg
∑i p∗

i Lreg(ti, t∗
i)

pi

p∗
i ti t∗

i



Proceedings	of	the	7th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/2025.24679

17

Figure 1: Image- and region-wise descriptor pooling from the Faster R-CNN architecture

2.2. Attention mechanisms

The attention mechanism enables models to focus on relevant features by assigning importance
weights. The Squeeze-and-Excitation Network (SENet) [11] is a channel attention mechanism that
explicitly models interdependencies between feature channels. SENet employs a “feature
recalibration” strategy, learning the importance of each channel to enhance useful features and
suppress irrelevant ones [12]. The SENet architecture consists of three main operations, as
illustrated in Figure 2 of the original paper.

Figure 2: Diagram of a Squeeze-and-Excitation building block [11]

3. Camdc-Faster RCNN algorithm

The proposed CAMDC-Faster RCNN algorithm, builds upon the Faster R-CNN framework by
integrating the Squeeze-and-Excitation Network (SENet) channel attention mechanism and the
characteristics of dilated convolution. A novel feature extraction network, AMDC-ResNet50, is
designed to enhance the capability to extract features from multi-scale and small objects in
unmanned aerial vehicle (UAV) images. Additionally, Region of Interest (ROI) Align is employed to
replace ROI Pooling, reducing positional errors during object regression. The Region Proposal
Network (RPN) anchor sizes are redesigned based on K-Means clustering tailored to the
characteristics of UAV image targets.

3.1. Feature extraction network: AMDC-ResNet50

The Faster R-CNN algorithm traditionally uses VGG16 as its feature extraction backbone, which
suffers from high parameter counts and limited capability to detect multi-scale and small objects.
Furthermore, standard convolution operations sum the results across all channels without
considering inter-channel relationships [8]. To address these limitations, ResNet50, proposed by He
et al. [12], is adopted as the baseline due to its deeper architecture, fewer parameters compared to
VGG16, and shortcut connections that mitigate the vanishing gradient problem in deep networks.

The proposed AMDC-ResNet50, enhances ResNet50 by incorporating the SENet channel
attention mechanism and dilated convolution. SENet is integrated into the initial layers of ResNet50
to recalibrate feature channels, allocating computational resources to the most informative channels
[11]. After the Conv4 layer, a custom-designed Parallel-Structured Dilated Convolution Feature
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Fusion Network (PSDCFFN) is introduced to improve the network’s ability to represent multi-scale
and small objects by expanding the receptive field and capturing diverse contextual information.

3.2. Parallel-structured dilated convolution feature fusion network: PSDCFFN

UAV image targets exhibit multi-scale characteristics and include small objects, making the size of
the convolutional kernel critical, as it determines the local receptive field. A receptive field that is
too small may fail to capture complete semantic information, while an overly large receptive field
may include excessive background noise, hindering small object detection [12]. Dilated convolution
addresses this by introducing gaps in the convolutional kernel, expanding the receptive field without
increasing the number of parameters, thus capturing multi-scale contextual information beneficial
for detecting multi-scale and small objects.

Inspired by TridentNet [12], which uses multi-branch dilated convolution but lacks feature fusion
across branches, this paper proposes the PSDCFFN. Integrated into ResNet50, PSDCFFN employs
three parallel paths to process features. First, Batch Normalization ensures data follows a normal
distribution, facilitating network convergence. Then, each path applies dilated convolution with
distinct dilation rates (R=1,2,5) to extract features at different scales. Finally, a hybrid feature fusion
strategy combines these features at both pixel and channel levels through element-wise addition and
channel concatenation, enhancing the network’s ability to represent multi-scale contextual
information. To mitigate the gridding effect in dilated convolution, the hybrid dilated convolution
(HDC) structure [13] is adopted, ensuring effective coverage of multi-scale receptive fields.

3.3. Improved localization and anchor optimization

In Faster R-CNN, the ROI Pooling process introduces quantization errors by discretizing region
boundaries and feature map bins, leading to positional inaccuracies in object regression [8]. To
address this, ROI Align is employed, which avoids quantization by using bilinear interpolation to
compute precise feature values, thereby reducing localization errors.

Additionally, the default RPN anchor sizes in Faster R-CNN are not optimized for UAV images,
which contain objects with diverse scales and aspect ratios. To adapt to these characteristics, K-
Means clustering is applied to analyze the size distribution of objects in the UAV image dataset. The
clustering results, with k=9, yield anchor scales of 32×32, 64×64, 128×128, and 256×256, and
aspect ratios of 1:2, 3:2, and 2:1, with a base stride of 8, improving the alignment of anchors with
UAV image targets.

4. Experiments

4.1. Datasets

Two datasets were used: the RSOD-Dataset and a custom UAV image dataset. The RSOD-Dataset, a
public aerial image dataset from Wuhan University, contains 976 images with 6,950 object instances
across four categories: aircraft (4,993 instances), oil tanks (1,586), overpasses (180), and
playgrounds (191). It features challenging characteristics such as severe background interference,
variable object scales, and small object sizes. The dataset was split into 780 training images and 196
testing images (8:2 ratio). The UAV image dataset, collected from the internet and UAV flights,
comprises 1,458 images captured at a height of 578 meters, including ground targets such as
pedestrians, motor vehicles (primarily cars), and non-motorized vehicles (e.g., motorcycles, electric
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scooters, bicycles). It was divided into 1,166 training images and 292 testing images (8:2 ratio).
Sample images from the UAV dataset.

4.2. Model training

To prevent overfitting due to the limited dataset size, transfer learning was employed. The model
was initialized with weights pre-trained on the VOC2007 dataset and fine-tuned on the RSOD-
Dataset and UAV image dataset. Training spanned 100 epochs, with a learning rate of 0.0001 for the
first 5 epochs and 0.00001 for the remaining 95 epochs, and a weight decay of 0.0005.

4.3. Experimental results and analysis

The performance of the proposed CAMDC-Faster RCNN algorithm was evaluated using metrics
including Average Precision (AP), mean Average Precision (mAP), F1 score, precision (P), and
recall (R), calculated as follows:

where TP, FP and FN denote true positives, false positives, and false negatives, respectively.
The proposed CAMDC-Faster RCNN was compared against several baseline algorithms on both

datasets. Results on the RSOD-Dataset show that CAMDC-Faster RCNN achieved an mAP of
92.52%, surpassing Faster R-CNN (88.96%), Faster RCNN + ResNet50 (90.34%), and other
variants. Notably, for the aircraft category, which includes multi-scale and small objects, the AP
improved by 4.95 percentage points compared to Faster R-CNN. On the UAV image dataset the
mAP reached 98.07%, with a 9.99 percentage point improvement in AP for the pedestrian category
compared to Faster R-CNN. The parameter count of CAMDC-Faster RCNN (167.67M) is also
significantly lower than that of Faster R-CNN (521.68M), indicating improved efficiency.

To assess the effectiveness of SENet, experiments were conducted by adding SENet to different
layers of the ResNet50 feature extraction network in Faster RCNN + ResNet50 on the RSOD-
Dataset. Adding SENet to Conv2 layers improved the mAP to 91.04%, with marginal gains in F1
score and recall, demonstrating that channel attention enhances feature representation. However,
adding SENet to all layers (Conv2–Conv4) slightly reduced the mAP to 90.03%, suggesting that
excessive attention mechanisms may introduce noise or overfitting.

mAP = 1
k
∑k

i=1 APi

Pprecision = TP

TP +FP
× 100%

Rrecall = TP

TP +FN
× 100%

F1 =
2×Pprecision×Rrecall

Pprecision+Rrecall
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Table 1: The impact of adding the PSDCFFN at different positions on algorithm performance

Conv
2

Conv
3

Conv
4

AP/% mAP/
% F1 Recall

Rate/%
Precision
Rate/%

Parameter
Count/MB1 2 3 4

72.9
6

95.8
7

95.3
1

99.9
9 91.04 0.89

3 91.78 86.95 108.31

√ 75.5
3

95.3
3

95.1
4

99.9
9 91.50 0.88

0 92.41 83.93 112.05

√ 74.4
6

95.2
6

93.8
4

98.6
0 90.54 0.88

3 92.28 84.61 126.94

√ 76.7
8

96.5
3

95.6
6

99.5
2 92.12 0.89

3 92.89 86.02 167.67

√ √ 66.1
4

88.4
9

89.4
5

99.0
5 85.78 0.81

9 87.46 76.92 130.68

√ √ 71.9
8

93.3
7

94.4
4 99.11 89.72 0.86

1 91.08 81.67 171.42

√ √ 72.2
2

90.6
4

93.4
0

99.5
2 88.95 0.89

2 90.39 87.96 182.54

√ √ √ 57.4
9

89.6
0

93.2
7

91.8
4 81.05 0.80

2 81.53 78.92 186.30

5. Conclusion

This paper addresses the challenges of UAV image object detection, including small object sizes,
wide scale variations, and complex backgrounds, by proposing the CAMDC-Faster RCNN
algorithm. By integrating the SENet channel attention mechanism and a novel PSDCFFN into the
ResNet50 backbone, the algorithm enhances feature representation for multi-scale and small objects.
The adoption of ROI Align reduces localization errors, and K-Means-based anchor optimization
improves adaptability to UAV image characteristics. Experimental results on the RSOD-Dataset and
a custom UAV image dataset demonstrate significant improvements, with mAP values of 92.52%
and 98.07%, respectively, outperforming baseline methods. The algorithm effectively handles multi-
scale and small objects, though challenges remain in detecting heavily occluded or indistinct targets.
Future work will focus on enhancing robustness to occlusions and further optimizing computational
efficiency for real-time UAV applications.
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