Design of a Bidirectional Micro-Gripper Based on Material Stiffness-Switching
Research Article
Open Access
CC BY

Design of a Bidirectional Micro-Gripper Based on Material Stiffness-Switching

Xin'ao Peng 1*
1 College of Engineering, Anhui Agricultural University, Hefei, Anhui, China, 230031
*Corresponding author: 3457465340@qq.com
Published on 4 July 2025
Volume Cover
ACE Vol.169
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-209-6
ISBN (Online): 978-1-80590-210-2
Download Cover

Abstract

Microgrippers require adaptive stiffness control to manipulate objects with varying mechanical properties, yet conventional variable-stiffness mechanisms face limitations in structural complexity, scalability, and hysteresis-induced inaccuracies. This study proposes a bidirectional microgripper that achieves stiffness modulation via material reconfiguration instead of actuator-dependent strategies. The design integrates a hybrid architecture combining a rigid aluminum alloy and a compliant silicone elastomer on opposing gripping surfaces. By rotating the jaw 360 degrees along a circular rail, the gripper switches between rigid (aluminum) and compliant (silicone) modes, obviating the need for auxiliary actuators or intricate control systems. Two distinct jaw configurations were modeled and simulated in SolidWorks to validate their feasibility. Simulation experiments confirmed effective stiffness adaptation, with comparative analysis highlighting trade-offs in grip stability and deformation tolerance. The results demonstrate a material-driven approach to hysteresis-free stiffness modulation, simplifying design while ensuring precision for manipulating delicate or rigid object. By replacing traditional dynamic-control paradigms with reconfigurable material interfaces, this work advances microgripper technology, offering scalable solutions for biomedical, semiconductor, and microassembly applications.

Keywords:

Micro-gripper, variable stiffness, simulation, industrial micro-assembly.

View PDF
Peng,X. (2025). Design of a Bidirectional Micro-Gripper Based on Material Stiffness-Switching. Applied and Computational Engineering,169,45-53.

References

[1]. Zhang, P. Y., Wu, G. Y., Hao, Y. L., & Li, Z. J. (2000). Advances and prospects in microgripper research.Optics and Precision Engineering, (3), 292–296.

[2]. Chen, X., **e, Z., Tai, K., Tan, H., & Chen, X. (2023). Design and test a pneumatically actuated microgripper based on structural stiffness. Review of Scientific Instruments, 94(7).

[3]. He, H. Z. (2022). Design and performance research of pneumatic soft robotic hand (Master’s thesis,Jiangsu University). https: //link.cnki.net/doi/10.27170/d.cnki.gjsuu.2022.002429doi: 10.27170/d.cnki.gjsuu.2022.002429.

[4]. Gong, J., Li, Y. H., Shi, Z. S., & Li, Q. X. (2005). Experimental study on a micro-clamping system based on shape memory alloys. New Technology and New Processes, (6), 18–20.

[5]. Li, R. (2019). Characteristic analysis and control research of shape memory alloy flexible actuator (Master’s thesis, South China University of Technology). https: //link.cnki.net/doi/10.27151/d.cnki.ghnlu.2019.001036doi: 10.27151/d.cnki.ghnlu.2019.001036.

[6]. Hua H.L., Liao Z.Q. & Chen Y.J. (2020).A 1-Dof bidirectional graspable finger mechanism for robotic gripper.Journal of Mechanical Science and Technology, 34(11), 4735-4741.

[7]. Zhang, Z. (2018). Design, fabrication, and cell manipulation experiments of electrothermally actuated microgrippers (Doctoral dissertation, Beijing University of Technology). https: //kns.cnki.net/kcms2/article/abstract?v=_GofKS1StuQhGeL9RwpSSaFTf-NpJLGuzGBGxJn0g1u9z7VtRBnitg5gjAPL4qzD9qd5w8P8ZpLvVPL7wdr--ZRn4aGaeWiI92GtWEFimt0Iu7LAFjp2FkMI0fb8AYA7YBUziFJi_YurLoXZ5Cf-KWEREAilqpED1pFtaFfBCoZmAzzjQS-TYCJC9gwC6lENdWD1uLT7_Mk=& uniplatform=NZKPT& language=CHS

[8]. van Assenbergh, P., Culmone, C., Breedveld, P., & Dodou, D. (2021). Implementation of anisotropic soft pads in a surgical gripper for secure and gentle grip on vulnerable tissues. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(3), 255-263.

[9]. Gwon, M., Park, G., Hong, D., Park, Y. J., Han, S., Kang, D., & Koh, J. S. (2022). Soft directional adhesion gripper fabricated by 3D printing process for grip** flexible printed circuit boards. International Journal of Precision Engineering and Manufacturing-Green Technology, 1-13.

[10]. Sun, L.N., Chen, L.G., Rong, W.B., Xie, H., & Liu, Y.J. (2008). Key technologies of micro-manipulation equipment for MEMS assembly and packaging. Chinese Journal of Mechanical Engineering, 44(11), 13–19.

[11]. Starke Jr, E.A., & Staley, J.T. (1996). Application of modern aluminum alloys to aircraft. Progress in aerospace sciences, 32(2-3), 131-172.

[12]. Shit, S.C., & Shah, P. (2013). A review on silicone rubber. National academy science letters, 36(4), 355-365.

[13]. Han, R., Li, Y., Zhu, Q., & Niu, K. (2022). Research on the preparation and thermal stability of silicone rubber composites: A review. Composites Part C: Open Access, 8, 100249.

[14]. Xu, W., Zhang, B., Du, K., Li, X. Y., & Lu, K. (2022). Thermally stable nanostructured Al-Mg alloy with relaxed grain boundaries. Acta Materialia, 226, 117640.

[15]. Czerwinski, F. (2020). Thermal stability of aluminum alloys. Materials, 13(15), 3441.

[16]. Slătineanu, L., Potârniche, Ş., Coteaţă, M., Grigoraş, I., Gherman, L., & Negoescu, F. (2011). Surface roughness at aluminium parts sand blasting. Proceedings in Manufacturing Systems, 6(2), 69-74.

[17]. Hopmann, C., Behmenburg, C., Recht, U., & Zeuner, K. (2014). Injection molding of superhydrophobic liquid silicone rubber surfaces. Silicon, 6(1), 35-43.

Cite this article

Peng,X. (2025). Design of a Bidirectional Micro-Gripper Based on Material Stiffness-Switching. Applied and Computational Engineering,169,45-53.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of CONF-MSS 2025 Symposium: Machine Vision System

ISBN: 978-1-80590-209-6(Print) / 978-1-80590-210-2(Online)
Editor: Cheng Wang, Marwan Omar
Conference date: 5 June 2025
Series: Applied and Computational Engineering
Volume number: Vol.169
ISSN: 2755-2721(Print) / 2755-273X(Online)