Study on Properties Optimization and Advanced Preparation Techniques of Alumina Ceramic Electronic Substrates
Research Article
Open Access
CC BY

Study on Properties Optimization and Advanced Preparation Techniques of Alumina Ceramic Electronic Substrates

Libohang Zhang 1* Tiankuo He 2, Ye Liu 3
1 Northwestern Polytechnical University,Xian,Shanxi
2 Northwestern Polytechnical University,Xian,Shanxi
3 Northwestern Polytechnical University,Xian,Shanxi
*Corresponding author: 44120388@mail.nwpu.edu.cn
Published on 4 July 2025
Journal Cover
ACE Vol.171
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-219-5
ISBN (Online): 978-1-80590-220-1
Download Cover

Abstract

Alumina (Al₂O₃) ceramics have become indispensable materials in the field of electronic substrates due to their excellent thermal conductivity, high insulation, and mechanical stability. This study systematically investigates the atomic bonding, crystal structure, and phase transformation behaviors of Al₂O₃ under various synthesis and sintering conditions. Emphasis is placed on the correlation between phase diagrams and material performance, particularly in relation to impurity control and sintering aids such as MgO. The findings provide a theoretical and practical basis for optimizing the preparation of high-purity α-Al₂O₃ substrates to meet the stringent requirements of modern electronic packaging.

Keywords:

Alumina ceramics, Electronic substrates, Phase diagram, Sintering, Dielectric performance

View PDF
Zhang,L.;He,T.;Liu,Y. (2025). Study on Properties Optimization and Advanced Preparation Techniques of Alumina Ceramic Electronic Substrates. Applied and Computational Engineering,171,33-45.

References

[1]. Y.G. Yushkov, E.M. Oks, A.V. Tyunkov, A.Y. Yushenko, D.B. Zolotukhin, Electron-Beam Deposition of Aluminum Nitride and Oxide Ceramic Coatings for Microelectronic Devices, Coatings 11(6) (2021).

[2]. C. Zhang, L. Zuo, Z. Hu, R. Lin, H. Zhao, C. Shen, X. Cheng, Synthesis, protection performance, and failure analysis of α-Al2O3/Mo(Si, Al)2 coatings, Surface and Coatings Technology 474 (2023) 130091.

[3]. Y. Hao, G. Zhang, L. Bai, Z. Yang, H. Jin, S. Gao, Interfacial microstructures and thermal/electrical conductivity of high‐temperature co‐fired alumina ceramic substrates, International Journal of Applied Ceramic Technology 22(3) (2024).

[4]. C. Liang, Z. Li, C. Wang, K. Li, Y. Xiang, X. Jia, Laser drilling of alumina ceramic substrates: A review, Optics & Laser Technology 167 (2023).

[5]. X.C. Wang, H.Y. Zheng, P.L. Chu, J.L. Tan, K.M. Teh, T. Liu, B.C.Y. Ang, G.H. Tay, Femtosecond laser drilling of alumina ceramic substrates, Applied Physics A 101(2) (2010) 271-278.

[6]. S. ARAMAKI, R. ROY, Revised Phase Diagram for the System Al2O3—SiO2, Journal of the American Ceramic Society 45(5) (1962) 229-242.

[7]. N. Salles, O. Politano, E. Amzallag, R. Tétot, Molecular dynamics study of high-pressure alumina polymorphs with a tight-binding variable-charge model, Computational Materials Science 111 (2016) 181-189.

[8]. I. Levin, D. Brandon, Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences, Journal of the American Ceramic Society 81(8) (2005) 1995-2012.

[9]. Y. He, S. Liu, M. Wang, Q. Cheng, H. Ji, T. Qian, C. Yan, Advanced In Situ Characterization Techniques for Direct Observation of Gas‐Involved Electrochemical Reactions, Energy & Environmental Materials 6(6) (2023).

[10]. M. Sardarian, O. Mirzaee, A. Habibolahzadeh, Influence of injection temperature and pressure on the properties of alumina parts fabricated by low pressure injection molding (LPIM), Ceramics International 43(6) (2017) 4785-4793.

[11]. M. Wang, F. Xie, J. Du, Z. Zhao, H. Zhang, H. Chen, B. Tang, X. Tan, Effects of crystallization of inter-granular glassy phase on the mechanical performance of alumina ceramics, Ceramics International 49(23) (2023) 39617-39626.

[12]. Y. Mechiche, D. Lofficial, S. Humbert, M. Digne, A. Méthivier, Rationalization of planetary ball milling process of boehmite γ-AlOOH: Towards operating conditions dependent transition alumina phase diagram, Powder Technology 433 (2024).

[13]. Y. Yuan, J. Fan, J. Li, J. Liu, K. Zhao, D. Liu, L. An, Oscillatory pressure sintering of Al2O3 ceramics, Ceramics International 46(10) (2020) 15670-15673.

[14]. Y. Kang, D. Sichen, K. Morita, Activities of SiO2in some CaO-Al2O3-SiO2(-10%MgO) melts with low SiO2contents at 1873K, Isij International 47(6) (2007) 805-810.

[15]. D. Ghosh, V.A. Krishnamurthy, S.R. Sankaranarayanan, APPLICATION OF OPTICAL BASICITY TO VISCOSITY OF HIGH ALUMINA BLAST FURNACE SLAGS, Journal of Mining and Metallurgy Section B-Metallurgy 46(1) (2010) 41-49.

[16]. Y.N. Shieh, R.R. D., D.R.F. and West, Constitution of laser melted Al2O3–MgO–SiO2 ceramics, Materials Science and Technology 11(9) (1995) 863-869.

[17]. M.I. Martin, F. Andreola, L. Barbieri, F. Bondioli, I. Lancellotti, J. Ma. Rincon, M. Romero, Crystallisation and microstructure of nepheline-forsterite glass-ceramics, Ceramics International 39(3) (2013) 2955-2966.

[18]. N.J. Azín, M.A. Camerucci, A.L. Cavalieri, Crystallisation of non-stoichiometric cordierite glasses, Ceramics International 31(1) (2005) 189-195.

[19]. S. Michelic, J. Goriupp, S. Feichtinger, Y.-B. Kang, C. Bernhard, J. Schenk, Study on Oxide Inclusion Dissolution in Secondary Steelmaking Slags using High Temperature Confocal Scanning Laser Microscopy, Steel Research International 87(1) (2016) 57-67.

[20]. Y. Yi, Y. Lin, M. Fang, W. Ma, W. Liu, Prediction Model for SiO2Activity in the CaO-Al2O3-SiO2-MgO Quaternary Slag System, Minerals 13(4) (2023).

[21]. G. Zhang, G. Cheng, Y. Huang, Y. Wang, W. Shen, H. Miao, X. Zhang, C. Yuan, Formation and Control of Large Oxide Inclusions at the Spot-Segregation Defects of Al-Killed GCr15SiMn Ingots, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 54(4) (2023) 1725-1738.

[22]. Z. Tong, J. Qiao, X. Jiang, Hot Metal Desulfurization Kinetics by CaO-Al2O3-SiO2-MgO-TiO2-Na2O Slags, Isij International 57(2) (2017) 245-253.

[23]. Y. Gao, M. Leng, Y. Chen, Z. Chen, J. Li, Crystallization Products and Structural Characterization of CaO-SiO2-Based Mold Fluxes with Varying Al2O3/SiO2 Ratios, Materials 12(2) (2019) 206.

[24]. Y. Kanda, K. Nakata, C. Temma, M. Sugioka, Y. Uemichi, Effects of Support on Formation of Active Sites and Hydrodesulfurization Activity of Rhodium Phosphide Catalyst, Journal of the Japan Petroleum Institute 55(2) (2012) 108-119.

[25]. J. Kansy, A.S. Ahmed, J. Liebault, G. Moya, Surface concentration of defects at grain boundaries in sintered alumina determined by positron annihilation lifetime spectroscopy, Acta Physica Polonica A 100(5) (2001) 737-742.

[26]. M.R. Cicconi, Z. Lu, T. Uesbeck, L. van Wuellen, D.S. Brauer, D. de Ligny, Influence of Vanadium on Optical and Mechanical Properties of Aluminosilicate Glasses, Frontiers in Materials 7 (2020).

[27]. H. Burhanuddin, H. Harmuth, S. Vollmann, Quantification of Magnesia Dissolution in Silicate Melts and Diffusivity Determination Using Rotating Finger Test, Applied Sciences-Basel 12(24) (2022).

[28]. J. Chen, H. Jian, L. Yehui, T. Rui, B. Chenguang, Z. Shengfu, M. and Hu, Effect of Al2O3 on the sintering process and the metallurgical performance of sinter, Canadian Metallurgical Quarterly 1-9.

[29]. K. Hashimoto, K. Niwa, THE EFFECT OF MGO ADDITION ON MULLITE SUBSTRATE, Yogyo-Kyokai-Shi 95(10) (1987) 1037-1039.

[30]. H.M. de Oliveira, H.d.L. Lira, L.N.d.L. Santana, Thermal Processing Effects on Biomass Ash Utilization for Ceramic Membrane Fabrication, Sustainability 17(3) (2025).

[31]. F.F. Chamasemani, F. Lenzhofer, R. Brunner, Deep learning revealed statistics of the MgO particles dissolution rate in a CaO-Al2O3-SiO2-MgO slag, Scientific Reports 14(1) (2024).

[32]. Burhanuddin, H. Harmuth, Dissolution of Magnesia in Silicate Melts and Diffusivity Determination from CLSM Studies, Applied Sciences-Basel 13(14) (2023).

[33]. Y. Ren, L. Zhang, Thermodynamic Model for Prediction of Slag-Steel-Inclusion Reactions of 304 Stainless Steels, Isij International 57(1) (2017) 68-75.

[34]. S. Vollmann, J. Guarco, Burhanuddin, Experimental, analytical, and numerical quantification of the Marangoni effect in static refractory finger test, Ceramics International 50(18) (2024) 33953-33967.

[35]. D. Zhang, L. Sun, H. Sun, Q. Wang, B. Wang, L. Zhu, Mineral Transition and Chemical Reactivity Evolution of a Low-Lime Calcium Aluminate Clinker with MgO and Na2SO4Codopants, Acs Omega 4(8) (2019) 13594-13602.

[36]. Y. Taniguchi, N. Sano, S. Seetharaman, Sulphide Capacities of CaO-Al2O3-SiO2-MgO-MnO Slags in the Temperature Range 1673-1773 K, Isij International 49(2) (2009) 156-163.

[37]. Z.-F. Sun, H.-L. He, P. Li, Q.-Z. Li, The spall strength and shock compressive damage of AD95 ceramics, Acta Physica Sinica 61(9) (2012).

Cite this article

Zhang,L.;He,T.;Liu,Y. (2025). Study on Properties Optimization and Advanced Preparation Techniques of Alumina Ceramic Electronic Substrates. Applied and Computational Engineering,171,33-45.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

About volume

Volume title: Proceedings of the 3rd International Conference on Functional Materials and Civil Engineering

ISBN: 978-1-80590-219-5(Print) / 978-1-80590-220-1(Online)
Editor: Anil Fernando
Conference website: https://2025.conffmce.org/
Conference date: 24 October 2025
Series: Applied and Computational Engineering
Volume number: Vol.171
ISSN: 2755-2721(Print) / 2755-273X(Online)